# UGCNET-Dec2012-II: 45

1.6k views

What is the result of the following expression?

(1 & 2) + (3 & 4)

1. 1
2. 3
3. 2
4. 0

recategorized

$\frac{\begin{matrix} &0 &0 &1 & (1)\\ \And& 0 &1 & 0 & (2) \end{matrix}}{\begin{matrix} \ \ \ \ & 0 &0 & 0 & (0) \end{matrix}}$               $\frac{\begin{matrix} &0 &1 &1 & (3)\\ \And& 1 &0 & 0 & (4) \end{matrix}}{\begin{matrix} \ \ \ \ & 0 &0 & 0 & (0) \end{matrix}}$

$\frac{\begin{matrix} &0 &0 &0 & (0)\\ + & 0 &0 & 0 & (0) \end{matrix}}{\begin{matrix} \ \ \ \ & 0 &0 & 0 & (0) \end{matrix}}$

( 1 & 2 )=0                      ( 3 & 4 )=0

( 1 & 2 )+( 3 & 4 )=0

Hence,Option(D)0 is the correct choice.

selected
0
@LeenSharma,I hope the above operation is of bitwise operator. :)

## Related questions

1
847 views
The statement print f (" % d", 10 ? 0 ? 5 : 1 : 12); will print $10$ $0$ $12$ $1$
Given a Relation POSITION (Posting-No, Skill), then the query to retrieve all distinct pairs of posting-nos. requiring skill is Select p.posting-No, p.posting-No from position p where p.skill=p.skill and p.posting-No < p.posting-No Select p$_1$.posting-No, p$_2$.posting-No from ... posting-No from position p$_1$, position p$_2$ where p$_1$.skill=p$_2$.skill and p$_1$.posting.No = p$_2$.posting-No