The Gateway to Computer Science Excellence
+25 votes
2.3k views

A binary operation $\oplus$ on a set of integers is defined as $x \oplus y = x^{2}+y^{2}$. Which one of the following statements is TRUE about $\oplus$?

  1. Commutative but not associative
  2. Both commutative and associative
  3. Associative but not commutative
  4. Neither commutative nor associative
in Set Theory & Algebra by Boss (17.7k points)
edited by | 2.3k views

2 Answers

+45 votes
Best answer
Answer is (A) Commutative but not associative.

$y \oplus x = y^2 + x^2 = x \oplus y$. Hence, commutative.

$ (x \oplus y) \oplus z = (x^2 + y^2) \oplus z = (x^2 + y^2)^2 + z^2$
$ x \oplus (y \oplus z) = x \oplus (y^2 + z^2) = x^2 + (y^2 + z^2)^2$

So, $( (x \oplus y) \oplus z) \neq (x \oplus (y \oplus z))$, hence not associative.
by Veteran (436k points)
selected by
0

This Will Help ....

0 votes
it is commutativa but not associative
by (349 points)
Quick search syntax
tags tag:apple
author user:martin
title title:apple
content content:apple
exclude -tag:apple
force match +apple
views views:100
score score:10
answers answers:2
is accepted isaccepted:true
is closed isclosed:true
51,925 questions
58,876 answers
200,195 comments
112,174 users