The Gateway to Computer Science Excellence
First time here? Checkout the FAQ!
x
+23 votes
1.8k views

A binary operation $\oplus$ on a set of integers is defined as $x \oplus y = x^{2}+y^{2}$. Which one of the following statements is TRUE about $\oplus$?

  1. Commutative but not associative
  2. Both commutative and associative
  3. Associative but not commutative
  4. Neither commutative nor associative
asked in Set Theory & Algebra by Boss (16.1k points)
edited by | 1.8k views

2 Answers

+40 votes
Best answer
Answer is (A) Commutative but not associative.

$y \oplus x = y^2 + x^2 = x \oplus y$. Hence, commutative.

$ (x \oplus y) \oplus z = (x^2 + y^2) \oplus z = (x^2 + y^2)^2 + z^2$
$ x \oplus (y \oplus z) = x \oplus (y^2 + z^2) = x^2 + (y^2 + z^2)^2$

So, $( (x \oplus y) \oplus z) \neq (x \oplus (y \oplus z))$, hence not associative.
answered by Veteran (413k points)
selected by
–1

This Will Help ....

0 votes
it is commutativa but not associative
answered by (331 points)
Answer:

Related questions

Quick search syntax
tags tag:apple
author user:martin
title title:apple
content content:apple
exclude -tag:apple
force match +apple
views views:100
score score:10
answers answers:2
is accepted isaccepted:true
is closed isclosed:true
49,807 questions
54,504 answers
188,309 comments
74,890 users