# UGCNET-Sep2013-III: 41

2.8k views

Given a binary search trees for a set of n=5 keys with the following probabilities :

$\begin{array}{|l|l|l|l|l|l|l|}\hline \textbf{i} & \text{0} & \text{1} & \text{2} & \text{3} & \text{4} & \text{5} \\\hline \textbf{$p_i$} & \text{-} & \text{0.15} & \text{0.10} & \text{0.05} & \text{0.10} & \text{0.20} \\\hline \textbf{$q_i$} & \text{0.05} & \text{0.10} & \text{0.05} & \text{0.05} & \text{0.05} & \text{0.10} \\\hline \end{array}$

The expected optimal cost of the search is

1. 2.65
2. 2.70
3. 2.75
4. 2.80
in DS
edited
1
0

Veteran Kindly explain how u have calculated

0

arjun sir,how to calculate depth(Ki) or depth(di) here..??as we are not given BST

0
0
How??
0
plz explain how to calculate

## Related questions

1 vote
1
1.5k views
Which of the following is the minimum cost for an assignment problem given below? $\begin{array}{|l|}\hline \\ \\ \text{Workers} \\ \\\\\hline \end{array} \begin{array}{|l|l|l|l|l|ll|} \hline \text{Jobs$ ... 13 16 17 18