The Gateway to Computer Science Excellence

+49 votes

Consider the following operation along with Enqueue and Dequeue operations on queues, where $k$ is a global parameter.

MultiDequeue(Q){ m = k while (Q is not empty) and (m > 0) { Dequeue(Q) m = m – 1 } }

What is the worst case time complexity of a sequence of $n$ queue operations on an initially empty

queue?

- $Θ(n)$
- $Θ(n + k)$
- $Θ(nk)$
- $Θ(n^2)$

+11

We can also say that we have [ Enqueue,Enqueue.........(n-1) times,MultiDequeue ] total n operation.First n-1 enqueue operation takes n-1 steps and last MultiDequeue (with m = n-1) will take n-1 steps. So total 2n -2 ops are performed in worst case O(n).

+1

what if the following operation is performed

1 Enqueue and 1 Dequeue--------2

2 Enqueue and 2 Dequeue--------4

3 Enqueue and 3 Dequeue--------6

.

.

(n-1) Enqueue and (n-1) Dequeue---------(n-1)*2

n Enqueue and n Dequeue-------------n*2

so total will be = 2+4+6+8........2*(n-1) + 2*n

=2(1+2+3.......(n-1)+n)

$= n^{2}+n$

$\approx \Theta (n^{2})$

0

@Ayush Upadhyaya had it been best case, then theta (k) ?

EDIT : missed the "worst case"

Best case will be sigma(k) right?

+92 votes

Best answer

There are three possible operations on queue- Enqueue, Dequeue and MultiDequeue. MultiDequeue is calling Dequeue multiple times based on a global variable $k$. Since, the queue is initially empty, whatever be the order of these operations, there cannot be more no. of Dequeue operations than Enqueue operations. Hence, the total no. operations will be $n$ only.

Correct Answer: $A$

Correct Answer: $A$

+5

The while loop will be continued until either k=0 or queue is empty....

hence while loop is limited in min( n,k)

It shud be thata(n+k) (B)

hence while loop is limited in min( n,k)

It shud be thata(n+k) (B)

+33

min ( n, k) is correct. But how it becomes theta(n + k)? Since the question asks for worst case, here k = n gives the worst case- loop cannot go beyond n times.

+1

Suppose I perform n-1 Enqueue operations and 1 multidequeue operation where k<n. Then won't the complexity beO((n-1)+k) = O(n+k)??

+26

As you said if there are are n-1 Enqueue operations, the complexity will be O(n) for Enqueue only. At worst k can be anything but the loop in multidequeue can never execute more than (n-1) times as the loop is not only depending on k but also checking if Q is empty. So if Multidequeue is performed it will again take O(n). So overall complexity = O(n+k) =O(n+n) = O(n).

Hope it helps.

Hope it helps.

0

As you also wrote.. " So overall complexity = O(n+k) =O(n+n) = O(n)".. so the more specific one is O(n+k). Isn't it?

+6

By writing O(n+k)= O(n+n).

I simply mean that at worst case k can be n itself. k is not defined in terms of input. And we are talking about asymptotic notations not about the exact value.

So that can be written as O(n) only.

I simply mean that at worst case k can be n itself. k is not defined in terms of input. And we are talking about asymptotic notations not about the exact value.

So that can be written as O(n) only.

+1

Sir we are asked the worst case. Let take in consideration the case like. I will perform 8 operation in total.

1- enqueue 7 element and call 1 multidequeue (k =7) them total operation = 8 but the number of steps involved are 14 steps. = N + K

2- If we don't use multidequeue. We can only do n steps in n operations. ONly N steps we can take like If again n = 8 . ( n operations) then either enqueue or dequeue which will make it. n steps only.

So why worst casenis not N+K. here Theta is used so we should say exactly and it will be N +K exactly . will be O(N) eventually but not theta. ??

1- enqueue 7 element and call 1 multidequeue (k =7) them total operation = 8 but the number of steps involved are 14 steps. = N + K

2- If we don't use multidequeue. We can only do n steps in n operations. ONly N steps we can take like If again n = 8 . ( n operations) then either enqueue or dequeue which will make it. n steps only.

So why worst casenis not N+K. here Theta is used so we should say exactly and it will be N +K exactly . will be O(N) eventually but not theta. ??

0

Here it is mentioned that the queue is initially empty

What if the queue is full and multiqueue is called, it would still be theta(n) ?

What if the queue is full and multiqueue is called, it would still be theta(n) ?

0

I doubt it , if the queue is full and multi-dequeue is called , then it should take $\Theta (1)$ time.

+13

@Arjun Sir-In support of your claim: $\theta(n+k)=max(n,k)$

Above is a good try, an exercise from cormen.

0

@Shauya how O(1) time?? I think it will still be .O(n)!!

@aysuh I don't understand how coreman problem is supporting this answer??

@aysuh I don't understand how coreman problem is supporting this answer??

0

each operation can be performed n times only since it is mentioned in question "worst case time complexity for n queue operations"

Since all operations need to be applied to an empty queue. There is no way multi-queue operation can execute fully, doesn't matter how big 'k' value is supplied, it will only execute in constant O(1) time on 1 call(its while loop will not be executed). We can call Multi-Dequeue n times and tc will remain n*O(1)

Another operation that can be applied on an empty queue is Enqueue . Enqueue can be called n times. .Therefore TC = O(n)

Dequeue can also be called on an empty queue. Each time it will take constant time. For n dequeue operations time taken will be n*O(1).

Therefore TC = theta(n).It is theta(n), because in this question for n queue operations, both best and the worst case will be O(n). Therefore it is average case also

Since all operations need to be applied to an empty queue. There is no way multi-queue operation can execute fully, doesn't matter how big 'k' value is supplied, it will only execute in constant O(1) time on 1 call(its while loop will not be executed). We can call Multi-Dequeue n times and tc will remain n*O(1)

Another operation that can be applied on an empty queue is Enqueue . Enqueue can be called n times. .Therefore TC = O(n)

Dequeue can also be called on an empty queue. Each time it will take constant time. For n dequeue operations time taken will be n*O(1).

Therefore TC = theta(n).It is theta(n), because in this question for n queue operations, both best and the worst case will be O(n). Therefore it is average case also

0

@ arjun sir

theta(n+k)=theta(n). Is that the only reason for choosing =theta(n) as the answer???

@sushmita No. Time complexity : number of steps taken by algorithm.

When will the above snippet take maximum steps ? when our k = m

Worst case time complexity is asked. At max how many times our while loop will be executed? **n times** (when k will be n)

Hence Theta (n)

+28 votes

Initially the queue is empty and we have to perform n operations. i) One option is to perform all Enqueue operation s i.e. n Enqueue operations. Complexity will beθ(n) or ii) We can perform a mix of Enqueue and Dequeue operations. It can be Enqueue for first n/2 times and then Dequeue for next n/2, or Enqueue and Dequeue alternately, or any permutation of Enqueues and Dequeues totaling ‘n’ times. Complexity will be θ(n) or iii) We can perform Enqueues and MultiDequeues. A general pattern could be as follows: Enqueue Enqueue ... (ktimes) MultiDequeue Enqueue Enqueue ... (ktimes) MultiDequeue ... Up to total n ---- k items enqueued -----k items deleted----k i tems enqueued ----k items deleted -- and so on. The number of times this k-Enqueues, MutiDequeue cycle is performed So, Complexity will be k times Enqueue + 1 MultiD equeue) =n or iv) We can just perform n MultiDequeues (or n Dequeues for that matter): Each time the while condition is false (empty que ue), condition is checked just once for each of the ‘n’ operations. So θ(n).

0

Can u plz tell that for enqueueing why are we performing DEQUEUE operations .

Also how come in multidequeue u r doing enqueue operations ? when we have only DEQUEUE there ?

Also how come in multidequeue u r doing enqueue operations ? when we have only DEQUEUE there ?

+20 votes

the answer will be A , i.e theta(n)

explanation : if you read the question closely , they have said that Queue is initially empty . So , when the line "While(Q is not empty)" is checked it turns out to be false and nothing is done by " Multi-Dequeue(Q) " , hence constant time or theta(1) . According to the question , this operation is performed for n times , thus n * theta(1) = theta(n)

hope i was clear enough

explanation : if you read the question closely , they have said that Queue is initially empty . So , when the line "While(Q is not empty)" is checked it turns out to be false and nothing is done by " Multi-Dequeue(Q) " , hence constant time or theta(1) . According to the question , this operation is performed for n times , thus n * theta(1) = theta(n)

hope i was clear enough

0

Very important point, if we want to know the complexity without assuming we are doing some en-queue operations. (Y)

+1

your judgment of question is completely wrong. n queue means either of enqueue, dequeue, multidequeue.

+2

Wrong judgement @Abir Mazumder

Queue is initially empty and we have to perform n queue operations (i.e Enqueue, Dequeue, Multidequeue), then we have to take the worst case among all the operations.

+7 votes

initially queue is empty and hence while loop will never going to be executed and therefore time complexity is not going to be depend on k, and thus it will be only O(n).

+2 votes

First of all n Queue operation means any order of enqueue, dequeue, or multidequeue. Now the question asks for worst case scenario which is possible when we do (n-1) enqueue and 1 multidequeue operation in this order. and moreover answers are given in Θ notation means tightest upper bound for worst case. now in worst case we can write complexity as O(n + k) but value of k can never going beyond n so we can say tightest upper bound is Θ (n + n) = Θ (n)

52,345 questions

60,470 answers

201,795 comments

95,272 users