# UGCNET-Dec2015-III: 65

1 vote
899 views

Consider a standard additive model consisting of rules of the form of

If $x$ is $A_i$ AND $y$ is $B_i$ THEN $z$ is $C_i$. Given crisp inputs $x=x_0, \: y=y_0$ the output of the model is

1. $z=\Sigma_i \mu_{A_i} (x_0) \mu_{B_i} (y_0) \mu_{C_i} (z)$
2. $z=\Sigma_i \mu_{A_i}(x_0) \mu_{B_i} (y_0)$
3. $z=\text{centroid } (\Sigma_i \mu_{A_i} (x_0) \mu_{B_i} (y_0) \mu_{C_i} (z))$
4. $z=\text{centroid } (\Sigma_i \mu_{A_i} (x_0) \mu_{B_i} (y_0)$
in Others
edited

1 vote

option c

STANDARD ADDITIVE MODEL (SAM)  includes the centroid defuzzification technique. here

IF x is AND y is THEN z is
Given crisp inputs x= x0, y = y0,

z=centroid(ΣiμAi(x0)μBi(y0)μCi(z))

selected

## Related questions

A bell shaped membership function is specified by three parameters $(a,b,c)$ as follows: $\dfrac{1}{1+\bigg(\dfrac{x-c}{a} \bigg)^b} \\$ $\dfrac{1}{1+\bigg(\dfrac{x-c}{a} \bigg)^{2b}} \\$ $1+\bigg(\dfrac{x-c}{a}\bigg)^b \\$ $1+\bigg(\dfrac{x-c}{a} \bigg)^{2b}$
A ________ point of a fuzzy set $A$ is a point $x \in X$ at which $\mu_{A} (x) = 0.5$ Core Support Crossover $\alpha​$-cut
Consider a fuzzy set A defined on the interval X=[0, 10]of integers by the membership Junction $\mu_A(x) = \frac{x}{x+2}$. Then the $\alpha$ cut corresponding to $\alpha =0.5 will be$\{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 \}\{ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 \}\{ 2, 3, 4, 5, 6, 7, 8, 9, 10 \}\{ \}$4 votes 1 answer 4 3.9k views Consider a unit square centered at origin. The coordinates at the square are translated by a factor$\biggr( \dfrac{1}{2}, 1 \biggl)$and rotated by an angle of$90^{\circ}\$ ...