# UGCNET-Dec2015-III: 66

913 views

A bell shaped membership function is specified by three parameters $(a,b,c)$ as follows:

1. $\dfrac{1}{1+\bigg(\dfrac{x-c}{a} \bigg)^b} \\$
2. $\dfrac{1}{1+\bigg(\dfrac{x-c}{a} \bigg)^{2b}} \\$
3. $1+\bigg(\dfrac{x-c}{a}\bigg)^b \\$
4. $1+\bigg(\dfrac{x-c}{a} \bigg)^{2b}$
in Others
edited

ans is B

A generalized bell MF (or Bell-shaped Function) is specified by three parameters {a, b, c}:

edited
0

## Related questions

1 vote
1
824 views
Consider a standard additive model consisting of rules of the form of If $x$ is $A_i$ AND $y$ is $B_i$ THEN $z$ is $C_i$. Given crisp inputs $x=x_0, \: y=y_0$ the output of the model is $z=\Sigma_i \mu_{A_i} (x_0) \mu_{B_i} (y_0) \mu_{C_i} (z)$ ... $z=\text{centroid } (\Sigma_i \mu_{A_i} (x_0) \mu_{B_i} (y_0)$
A ________ point of a fuzzy set $A$ is a point $x \in X$ at which $\mu_{A} (x) = 0.5$ Core Support Crossover $\alpha​$-cut
Let $A_{\alpha_0}$ denotes the $\alpha$-cut of a fuzzy set $A$ at $\alpha_0$. If $\alpha_1 < \alpha_2$, then $A_{\alpha_1} \supseteq A_{\alpha_2}$ $A_{\alpha_1} \supset A_{\alpha_2}$ $A_{\alpha_1} \subseteq A_{\alpha_2}$ $A_{\alpha_1} \subset A_{\alpha_2}$
Consider the following methods: $M_1$: Mean of maximum $M_2$: Centre of area $M_3$: Height method Which of the following is/are defuzzification method(s)? Only $M_2$ Only $M_1$ and $M_2$ Only $M_2$ and $M_3$ $M_1$, $M_2$ and $M_3$