2.8k views

Consider a unit square centered at origin. The coordinates at the square are translated by a factor $\biggr( \frac{1}{2}, 1 \biggl)$ and rotated by an angle of 90$^o$. What shall be the coordinates of the new square?

1. $\biggr(\frac{-1}{2},0 \biggl), \biggr( \frac{-1}{2},1 \biggl),\biggr( \frac{-3}{2},1 \biggl),\biggr( \frac{-3}{2},0 \biggl)$
2. $\biggr( \frac{-1}{2},0 \biggl), \biggr( \frac{1}{2},1 \biggl),\biggr( \frac{3}{2},1 \biggl), \biggr( \frac{3}{2},0 \biggl)$
3. $\biggr( \frac{-1}{2},0 \biggl), \biggr( \frac{1}{2},0 \biggl),\biggr( \frac{-3}{2},1 \biggl), \biggr( \frac{-3}{2},0 \biggl)$
4. $\biggr( \frac{-1}{2},0 \biggl), \biggr( \frac{1}{2},1 \biggl),\biggr( \frac{-3}{2},1 \biggl), \biggr( \frac{-3}{2},0 \biggl)$

edited | 2.8k views

ans is A

by Boss (48.5k points)
selected
0
could you please explain, how 3/2 comes here...?
0
translation vectors  are  Tx =1/2  and Ty=1   since it is unit  square points will be (1/2 ,1/2 ) ....
so point A will be  ( 1/2+1/2 =1  ,  1+1/2 =3/2 )
0

1
2
+1 vote