edited by
2,857 views
19 votes
19 votes

Design a logic circuit to convert a single digit BCD number to the number modulo six as follows (Do not detect illegal input):

  1. Write the truth table for all bits. Label the input bits $I_1, I_2, \ldots$ with $I_1$ as the least significant bit. Label the output bits $R_1, R_2\ldots$ with $R_1$ as the least significant bit. Use $1$ to signify truth.
  2. Draw one circuit for each output bit using, altogether, two two-input AND gates, one two-input  OR gate and two NOT gates.
edited by

3 Answers

Best answer
17 votes
17 votes

$${\begin{array}{|cccc|c|ccc|}\hline
\bf{I_4}&    \bf{I_3}&  \bf{I_2}&\bf{ I_1}& &\bf{R_3}& \bf{R_2} & \bf{R_1}\\\hline
0&0&0&0&\bf{0} &0&0&0\\\hline 0&0&0&1&\bf{1}& 0&0&1 \\ \hline    0&0&1&0&\bf{2}& 0&1&0 \\ \hline 0&0&1&1&\bf{3}& 0&1&1 \\ \hline 0&1&0&0&\bf{4}& 1&0&0 \\ \hline   0&1&0&1&\bf{5} &1&0&1  \\ \hline  0&1&1&0&\bf{6}& 0&0&0 \\ \hline0&1&1&1&\bf{7}& 0&0&1\\ \hline    1&0&0&0&\bf{8}& 0&1&0 \\ \hline 1&0&0&1&\bf{9}& 0&1&1 \\ \hline
 \end{array}}$$

  • $R_1 = I_1$
  • $R_2 = I_2\overline{ I_3} + I_4$
  • $R_3 = I_3\overline{I_2}$

This requires $2$ NOT gates, $2$ two-input AND gates and $1$ two-input OR gate. 

edited by
12 votes
12 votes

After using Don't care (10,11,12,13,14,15) and after K-Map simplification you will get

R1=I1

R2=I2.I3' + I4

R3= I3.I2'

R4 = 0

Here, 2 input AND Gate used=2

          2 input OR Gate used=1

          NOT Gate used=2

Related questions

1 votes
1 votes
1 answer
1
admin asked Dec 15, 2022
285 views
How many minimum number of $\text{NOR}$ gates are required to implement the function $F=A^{\prime} B^{\prime} C^{\prime}+A B C^{\prime}$
37 votes
37 votes
5 answers
3
Kathleen asked Sep 14, 2014
11,435 views
The following arrangement of master-slave flip flopshas the initial state of $P, Q$ as $0, 1$ (respectively). After three clock cycles the output state $P, Q$ is (respect...
35 votes
35 votes
6 answers
4
Kathleen asked Sep 14, 2014
7,025 views
Which functions does NOT implement the Karnaugh map given below? $(w + x) y$$xy + yw$$(w + x) (\bar{w} + y) (\bar{x} + y)$None of t...