Answer is C
S1 : take set universal set = U = {set of natural numbers} = { 1,2,3,4,5,6,7,8...... infinite } ,
set (A) = { set of even numbers } = { 2, 4, 6, 8, 10, 12 ......infinite } ,
set (B) = { set of prime numbers } = { 2, 3, 5, 7, 11, 13........infinite } ,
and set (C) = { set of odd numbers } = { 1, 3, 5, 7, 9, 11, 13........infinite }.
now A ∩ ( B ∪ C ) = { set of even numbers } ∩ ({ set of prime numbers } ∪ { set of odd numbers } )
= { set of even numbers } ∩ { { 2, 3, 5, 7, 11, 13........infinite } ∪ { 1, 3, 5, 7, 9, 11, 13........infinite } }
= { set of even numbers } ∩ { 1 , 2, 3, 5, 7, 9, 11, 13.......infinite }
= { set of even numbers } ∩ { { 2 } ∪ {1 , 3, 5, 7, 9, 11, 13.......infinite }}
= { set of even numbers } ∩ { { 2 } ∪ { set of odd numbers } }
= { set of even numbers } ∩ { { 2 } ∪ { set of odd numbers } } = { 2 } = only one element i.e. 2 = finite set
NOTE :- all, prime numbers are odd number except 2 .
S2: True becouse two irrational no. are -sqrt(2) and +sqrt(2) , when we add = -sqrt(2) +sqrt(2) = 0 ( 0 is a rational number)