retagged by
460 views
2 votes
2 votes

retagged by

1 Answer

Best answer
5 votes
5 votes

$\color{olive}{f(x) = \sin(x) + \cos(2x)}$

$\color{olive}{f'(x) = \cos(x) - 2\sin(2x)}$

$\color{olive}{f'(x) = \cos(x) - 4\sin(x)\cos(x)}$

$\color{olive}{f'(x) = \cos(x)(1-  4\sin(x))}$

For minima and maxima, $f'(x) = 0$

$f'(x) = \cos(x)(1-  4\sin(x)) = 0$

$\cos(x) = 0$ (or) $1 - 4\sin(x) = 0$

$x = \frac{\pi}{2},\frac{3\pi}{2}$ (or) $\sin(x) = \frac{1}{4} \Rightarrow x = \sin^{-1}(\frac{1}{4})$

Now, the proper method for finding minima and maxima is to check whether $f''(x) \gt 0$ or $f''(x) \lt 0$, but here as we are required to find both minima and maxima, i will directly put values of x and find out.

When $x = \frac{\pi}{2}$, $f(x) = 1 + (-1) = 0$

When $x = \frac{3\pi}{2}$, $f(x) = \sin(\frac{3\pi}{2}) + \cos(3\pi) = -1 + (-1) = -2$

$\sin(x) = \frac{1}{4}$, $\cos(x) = \frac{\sqrt{15}}{4}$, $\sin(2x) = 2\sin(x)\cos(x) = 2*\frac{1}{4}*\frac{\sqrt{15}}{4} = \frac{\sqrt{15}}{8}$ and $\cos(2x) = \frac{\sqrt{64-15}}{8} = \frac{7}{8}$

When, $x = \sin^{-1}(\frac{1}{4})$, $f(x) = \sin(x) + \cos(2x) = \frac{1}{4} + \frac{7}{8} = \frac{2}{8} + \frac{7}{8} = \frac{9}{8}$

Hence, $\color{navy}{f(x)_{max} = \frac{9}{8}}$ and $\color{navy}{f(x)_{min} = -2}$

selected by

Related questions

2 votes
2 votes
1 answer
1
23 votes
23 votes
3 answers
2
Arjun asked Feb 12, 2020
12,125 views
Consider the functions $e^{-x}$$x^{2}-\sin x$$\sqrt{x^{3}+1}$Which of the above functions is/are increasing everywhere in $[ 0,1]$?Ⅲ onlyⅡ onlyⅡ and Ⅲ onlyⅠ a...
5 votes
5 votes
0 answers
3
Tuhin Dutta asked Jan 4, 2018
1,182 views
$The\ maximum\ value\ of\\f(x)\ =\ 2x^3-9x^2+12x-3\ in\ the\ interval\ 0<=x<=3\ is\ $_____________________
3 votes
3 votes
0 answers
4
Tuhin Dutta asked Jan 4, 2018
752 views
$At\ x\ =\ 0,\ the\ function\ f(x)\ =\ |x|\ has\ a\\ (a)Minimum\\(b)Maximum\\(c)a\ point\ of\ inflection\\(d)Neither\ a\ maxima\ nor\ a\ minima$