GATE CSE
First time here? Checkout the FAQ!
x
+2 votes
127 views

asked in Mathematical Logic by Boss (6.8k points) 7 26 92
retagged by | 127 views
Iam getting Max = $\frac{9}{8}$ and min = $0$
maximum match but minimum doesn't match the answer which has been given

max=1.125    //9/8=1.125

min = -2
how did u get max?
Yes, it has to be $-2$, i calculated min at $x=2\pi$, which is wrong.
Wait a minute. Writing answer!

1 Answer

+5 votes
Best answer

$\color{olive}{f(x) = \sin(x) + \cos(2x)}$

$\color{olive}{f'(x) = \cos(x) - 2\sin(2x)}$

$\color{olive}{f'(x) = \cos(x) - 4\sin(x)\cos(x)}$

$\color{olive}{f'(x) = \cos(x)(1-  4\sin(x))}$

For minima and maxima, $f'(x) = 0$

$f'(x) = \cos(x)(1-  4\sin(x)) = 0$

$\cos(x) = 0$ (or) $1 - 4\sin(x) = 0$

$x = \frac{\pi}{2},\frac{3\pi}{2}$ (or) $\sin(x) = \frac{1}{4} \Rightarrow x = \sin^{-1}(\frac{1}{4})$

Now, the proper method for finding minima and maxima is to check whether $f''(x) \gt 0$ or $f''(x) \lt 0$, but here as we are required to find both minima and maxima, i will directly put values of x and find out.

When $x = \frac{\pi}{2}$, $f(x) = 1 + (-1) = 0$

When $x = \frac{3\pi}{2}$, $f(x) = \sin(\frac{3\pi}{2}) + \cos(3\pi) = -1 + (-1) = -2$

$\sin(x) = \frac{1}{4}$, $\cos(x) = \frac{\sqrt{15}}{4}$, $\sin(2x) = 2\sin(x)\cos(x) = 2*\frac{1}{4}*\frac{\sqrt{15}}{4} = \frac{\sqrt{15}}{8}$ and $\cos(2x) = \frac{\sqrt{64-15}}{8} = \frac{7}{8}$

When, $x = \sin^{-1}(\frac{1}{4})$, $f(x) = \sin(x) + \cos(2x) = \frac{1}{4} + \frac{7}{8} = \frac{2}{8} + \frac{7}{8} = \frac{9}{8}$

Hence, $\color{navy}{f(x)_{max} = \frac{9}{8}}$ and $\color{navy}{f(x)_{min} = -2}$

answered by Veteran (27.3k points) 19 70 243
selected by

Related questions

+2 votes
1 answer
1
asked in Mathematical Logic by Prateek kumar Boss (6.8k points) 7 26 92 | 108 views
0 votes
0 answers
2
asked in Mathematical Logic by Prateek kumar Boss (6.8k points) 7 26 92 | 68 views
+2 votes
2 answers
3
asked in Mathematical Logic by Prateek kumar Boss (6.8k points) 7 26 92 | 124 views


Quick search syntax
tags tag:apple
author user:martin
title title:apple
content content:apple
exclude -tag:apple
force match +apple
views views:100
score score:10
answers answers:2
is accepted isaccepted:true
is closed isclosed:true
Top Users Oct 2017
  1. Arjun

    23398 Points

  2. Bikram

    17078 Points

  3. Habibkhan

    8264 Points

  4. srestha

    6296 Points

  5. Debashish Deka

    5438 Points

  6. jothee

    4978 Points

  7. Sachin Mittal 1

    4772 Points

  8. joshi_nitish

    4348 Points

  9. sushmita

    3964 Points

  10. Rishi yadav

    3804 Points


Recent Badges

Notable Question KISHALAY DAS
Notable Question sh!va
Notable Question abhijeetbzu
Great Question jothee
Popular Question rahul sharma 5
Nice Question mohit kumar 5
Notable Question rishu_darkshadow
Nice Comment Pranay Datta 1
Copy Editor Shivansh Gupta
Nice Comment KULDEEP SINGH 2
27,324 questions
35,176 answers
84,108 comments
33,279 users