GATE CSE 2014 Set 1 | Question: GA-4
in Quantitative Aptitude edited by
1,986 views
12 votes
If $\large\left(z + \dfrac{1}{z}\right)^{2}= 98$, compute $\large \left(z^{2} +\dfrac{1}{z^{2}}\right)$.
in Quantitative Aptitude edited by
by
2k views

Subscribe to GO Classes for GATE CSE 2022

2 Answers

22 votes
 
Best answer
$\quad \left(Z+\dfrac{1}{Z}\right)^{2}$

$= \left(z^{2} + 2(z)\left(\dfrac{1}{z}\right) + \left(\dfrac{1}{z}\right)^{2}\right) = \left(z^{2} + \dfrac{1}{z^{2}}\right)+2 =98$

$\Rightarrow 98-2 = 96$ is answer..
edited by

1 comment

moved by
answer is 96
1
1 vote
$\left(Z+\dfrac{1}{Z}\right)^{2}=98$

$\implies Z^{2}+\dfrac{1}{Z^{2}}+2Z\cdot \dfrac{1}{Z}=98$

$\implies Z^{2}+\dfrac{1}{Z^{2}}+2=98$

$\implies Z^{2}+\dfrac{1}{Z^{2}}=96$
edited by
Answer:

Related questions

Ask
Quick search syntax
tags tag:apple
author user:martin
title title:apple
content content:apple
exclude -tag:apple
force match +apple
views views:100
score score:10
answers answers:2
is accepted isaccepted:true
is closed isclosed:true