edited by
16,165 views
75 votes
75 votes

An unbalanced dice (with $6$ faces, numbered from $1$ to $6$) is thrown. The probability that the face value is odd is $90\%$ of the probability that the face value is even. The probability of getting any even numbered face is the same. If the probability that the face is even given that it is greater than $3$ is $0.75$, which one of the following options is closest to the probability that the face value exceeds $3$?

  1. $0.453$
  2. $0.468$
  3. $0.485$
  4. $0.492$
edited by

11 Answers

Best answer
33 votes
33 votes
$P_{odd}+P_{even}=0.9x+x=1 \Rightarrow x=\frac{1}{1.9}, i.e. P_{even}=\frac{1}{1.9}$

$P(\frac{even}{>3})=\frac{P(even)P(\frac{>3}{even})}{P(>3)}$

$0.75 =\frac{\frac{1}{1.9}*\frac{2}{3}}{P(>3)}$

$\Rightarrow P(>3)=0.468$
edited by
56 votes
56 votes

Answer is (B)

$P\left(\{1,3,5\}\right) =  0.9 P\left(\{2,4,6\}\right)$ and their sum must be $1$. So,

$P\left(\{1,3,5\}\right) = \frac{0.9}{1.9} = 0.4736$ and

$P\left(\{2,4,6\}\right) = \frac{1}{1.9} = 0.5263$

Given that probability of getting $2$ or $4$ or $6$ is same.

So, $P(2) = P(4) = P(6) = \frac{0.5263}{3} = 0.1754$

$\quad\; P\left(\{4,6\}\right) \mid x > 3)= 0.75$

$\Rightarrow P(5 \mid x>3) = 0.25$

$\Rightarrow P(5) = \frac{1}{3} (P(4)+ P(6)) \because x> 3$

$\Rightarrow x \in \{4,5,6\}$

$\Rightarrow P(5) =  \frac{2.P(4)}{3} \because P(4) = P(6)$.

So, $P(x > 3) = P(4) + P(5) + P(6) = \frac{8}{3}\times 0.1754 =0.468 $

edited by
29 votes
29 votes

I just give the answer in another way using Conditional Probablity:

let p(2)=p(4)=p(6) = x; so  p(1)+p(3)+p(5) = 3*x(0.9).

Now as sum of p(i) for i=1 to 6 =1;

so x = 10/57;

Now, The probability that the face is even given that it is greater than 3 is   p(i where i is even and i>3)/p(i>3) = .75

so,   {p(4)+p(6)}/.75 = p(i>3);

so p(i>3) = (2x)/.75  = 0.46784

edited by
Answer:

Related questions

61 votes
61 votes
6 answers
3