By using tan(45-x) i am getting

-ln2/2

In my answer - sign is also there.

Please correct me..

-ln2/2

In my answer - sign is also there.

Please correct me..

3,078 views

Best answer

Let $\displaystyle I = \int_{0}^{\frac{\pi}{4}}\frac{1-\tan x}{1+\tan x}dx = \int_{0}^{\frac{\pi}{4}}\frac{\cos x-\sin x}{\cos x+\sin x}dx$

Now put $\cos x+\sin x=t\;,$ Then $\left(-\sin x+\cos x\right)dx = dt$ and changing limit

So we get $\displaystyle I = \int_{1}^{\sqrt{2}}\frac{1}{t}dt = \left[\ln t\right] = \ln(\sqrt{2}) = \frac{\ln 2}{2}$

Correct Answer: $D$

Now put $\cos x+\sin x=t\;,$ Then $\left(-\sin x+\cos x\right)dx = dt$ and changing limit

So we get $\displaystyle I = \int_{1}^{\sqrt{2}}\frac{1}{t}dt = \left[\ln t\right] = \ln(\sqrt{2}) = \frac{\ln 2}{2}$

Correct Answer: $D$

$\int_{0}^{\frac{\pi}{4}} \dfrac{1 - \tan x}{1 + \tan x}\\ \\ = \int_{0}^{\frac{\pi}{4}} \dfrac{\cos x - \sin x}{\cos x + \sin x}\\ \text{ Multiply and divide by cos(x)-sin(x)}\\ = \int_{0}^{\frac{\pi}{4}} \dfrac{1-2\cos x\sin x}{\cos 2x}\\ \int_{0}^{\frac{\pi}{4}} \dfrac{1 - \tan x}{1 + \tan x}\\ \\ = \int_{0}^{\frac{\pi}{4}} \dfrac{\cos x - \sin x}{\cos x + \sin x}$

Answer is **D.**

Search GATE Overflow