If p, q, r, s are distinct integers such that:
$f (p, q, r, s) = \text{ max } (p, q, r, s)$
$g (p, q, r, s) = \text{ min } (p, q, r, s)$
$h (p, q, r, s) = \text {remainder of } \frac{(p \times q)} {(r \times s)} \text{ if } (p \times q) > (r \times s)$
$\text{ or remainder of } \frac {(r \times s)}{(p \times q)} \text{ if } (r \times s) > (p \times q)$
Also a function $fgh (p, q, r, s) = f(p, q, r, s) \times g(p, q, r, s) \times h (p, q, r, s)$
Also the same operations are valid with two variable functions of the form $f(p, q)$
What is the value of $fg \left(h \left(2, 5, 7, 3\right), 4, 6, 8\right)$?