edited by
11,757 views
36 votes
36 votes
A link has transmission speed of $10^6$ bits/sec. It uses data packets of size $1000$ $\text{bytes}$ each. Assume that the acknowledgment has negligible transmission delay and that its propagation delay is the same as the data propagation delay. Also, assume that the processing delays at nodes are negligible. The efficiency of the stop-and-wait protocol in this setup is exactly $25$$\text{%}$. The value of the one way propagation delay (in milliseconds) is_____.
edited by

4 Answers

Best answer
45 votes
45 votes

In stop and wait, a frame is sent and next frame will be sent only after ACK is received.

$\text{Efficiency} =\dfrac{\text{Amount of data sent}} {\text{Amount of data that could be sent}}$

$=\dfrac{\text{Amount of data sent}}{ RTT \times 10^6}$
 

$= \dfrac{\text{Amount of data sent}}{ \left( \text { Prop. delay for data}+\text{Prop.delay for ACK}
 + \text{Transmission time for data} +\text{Transmission time for ACK} \right) \times 10^6} $


$= \dfrac {1000 \times 8}{ \left( p + p + 1000 \times \dfrac{8}{10^6} + 0 \right) \times 10^6}$

$= \dfrac{8}{2p+8\;\text{ms}} \text{ (where p is the prop. delay in milli seconds)}$

$= \dfrac{4}{p+4} = 0.25 \text{ (given in question)}$

So, $p + 4 = 16, p = 12 \;\text{ms}$.

edited by
19 votes
19 votes
Transmission time Tt=1000*8/10^6=8/10^3 sec=8 ms

efficiency =25%=1/4=Tt/(Tt+2*Tp)

8/(8+2*Tp)=1/4

Tp=12

so propagation Delay is 12 ms
5 votes
5 votes
as per the question Bandwidth$= 10^{6}bps$

data size$=1000 Bytes$

by these two we can calculate transmission time by using formula $\frac{Data size}{BW}$

as data size in bytes convert to bits hence $T_{t}= 8ms$

Efficiency$=25\% i.e$ $0.25$

efficiency$= \frac{T_{t}}{T_{t}+2T_{p}}$         (I am not taking td ack time as it is negligible)

$0.25= \frac{T_{t}}{T_{t}+2T_{p}}$

$0.25(T_{t}+2T_{p}) = T_{t}$

$0.25T_{t} + 0.5T_{t} = T_{t}$

Hence $0.5T_{p} = 0.75T_{t}$

$T_{p} = 0.75T_{p}/0.5$

$T_{p} = 1.5 T_{t}$

$1.5\times8 = 12ms$

$T_{p} = 12ms$
edited by
1 votes
1 votes
Given Bandwidth (B) = 10^6 bits/sec , L = 1000 * 8 bits ,  η = 25% = 1/4

Tt = L/ B = 1000* 8 / 10^6 = 8ms  (Transmisson delay of acknowledgement is negligible not  Packet )

 η=1/1+2*a

1/4=1/1+2*a => a = 3/2 => Tp = 3/2*Tt => Tp = 3/2 * 8 = 12 ms
Answer:

Related questions

38 votes
38 votes
5 answers
3