The Gateway to Computer Science Excellence
+26 votes
4.5k views
The number of min-terms after minimizing the following Boolean expression is _______.

[D'+AB'+A'C+AC'D+A'C'D]'
in Digital Logic by Veteran (105k points)
edited by | 4.5k views
+4
Directly apply the boolean algebra and get the right answer

min-term=1
0

15 max terms

1 min terms 

10 Answers

+48 votes
Best answer

$F = [D'+AB'+A'C+AC'D+A'C'D]'$

$F'= D'+AB'+A'C+AC'D+A'C'D$

Now we have F', so fill 0's (maxterms) in K-map for each term

As for D'

Similarly for $AB'$, $A'C, AC'D$ and $A'C'D$.  We will get

We get one place for minterm and that is ABCD

by Veteran (56.8k points)
edited by
0
@praveen _sir why we need to make k map,

suppose if i put A=B=C=D= 1 and solve the F  then we get 0 so the value of F' = 1

correct sir ??
0
it will work with this problem
0
@praveen_sir only this particular problem ??

I always used to solve such type of question , am i going in wrong direction??
0
actually here we get F= ABCD, on putting 1  , we get  F= 1 , it is only possible with one combination.
if suppose we got F= 0, there are 4 possibilities
+1

@Praveen+Saini

Sir m not getting this step

F=[D′+AB′+A′C+AC′D+A′C′D]′

F′=D′+AB′+A′C+AC′D+A′C′D

2nd equation above represent in F' function whatever on RHS are minterms (as it is SOP )So ..for K map of F'

we should fill minterms why maxterms filled here..

+3

@jatin khachane 1 

Let $F={[{D}'+A{B}'+{A}'C+A{C}'D+{A}'{C}'D]}'$

Apply both side complement 

${F}'={[{[{D}'+A{B}'+{A}'C+A{C}'D+{A}'{C}'D]}']}'$

${F}'=[{D}'+A{B}'+{A}'C+A{C}'D+{A}'{C}'D]$         $[({X}')'=X]$

${F}'={D}'+A{B}'+{A}'C+A{C}'D+{A}'{C}'D$ 

${F}'={D}'+A{B}'+{A}'C+(A+{A}'){C}'D$ 

${F}'={D}'+A{B}'+{A}'C+1.{C}'D$            $[X+{X}'=1]$

${F}'={D}'+{C}'D+A{B}'+{A}'C$

${F}'=({D}'+{C}').({D}'+D)+A{B}'+{A}'C$          $[X+YZ=(X+Y).(X+Z)]$

${F}'=({D}'+{C}').1+A{B}'+{A}'C$ 

${F}'={D}'+{C}'+A{B}'+{A}'C$  

${F}'={D}'+A{B}'+{C}'+{A}'C$​​

${F}'={D}'+A{B}'+({C}'+{A}').({C}'+C)$

${F}'={D}'+A{B}'+({C}'+{A}').1$

${F}'={D}'+A{B}'+{C}'+{A}'$

${F}'={D}'+{A}'+A{B}'+{C}'$

${F}'={D}'+({A}'+A).({A}'+{B}')+{C}'$

${F}'={D}'+1.({A}'+{B}')+{C}'$

${F}'={D}'+{A}'+{B}'+{C}'$

${F}'={A}'+{B}'+{C}'+{D}'$

Apply both side complement

$({{F}'})'=({{A}'+{B}'+{C}'+{D}'})'$

Apply Demorgan's laws

$({A+B})'={A}'.{B}'$

$({A.B})'={A}'+{B}'$

$({F}')'=({A}')'.({B}')'.({C}')'.({D}')'$

$F=ABCD$

So,this is the minterm.

0
I understood this method ..but not getting that K map method :(
0
@jatin we've complimented the function now where there was min terms they got changed to max terms and maxterms to minterms in K-map.

In K-map method D' means we have a subcube of size 8 beacuse of which three variables got eliminated ...so we form a Subcube of size 8 in K Map ..in case of AC' ..two variables are missing therefore we've to form a subcube of size 4 in the K-map by filling the max terms appropriately...like wise we've to fill for all.
+1

So is it like this

# of minterms in F = ? 

We know # of minterms in F = # of maxterms in F'

F = [D′+AB′+A′C+AC′D+A′C′D]′

So, F′ = [D′+AB′+A′C+AC′D+A′C′D]

K map for F'

  C'D' C'D CD CD'
A'B' 1 1 1 1
A'B 1 1 1 1
AB 1 1 0 1
AB' 1 1 1 1

Maxterm in F' => A'+B'+C'+D'

So in F only one Minterm ABCD 

Correct me if i am wrong?

+1
Yes it is right

and you also see my answer, below the comment section.
0
Yes ..i have seen ..that will be very easy..just to make concept clear on mint and max t..i did this ..
0
Good :)
0
Sir..it is always true that
1) # of minterms in F = # maxterms in its complemented form.
2) So Demorgans law is the only way to find complement of the function
0

@jatin khachane 1 Please don't say sir to me

I'm also an aspirant like yours.

I think both statements are looking right.

0

@jatin khachane 1 don't get confused unnecessarily. Stick to basics. Recall basic functions that we study in discrete.

1. If there are total n terms in domain and x of which are mapped to 1 then n-x will be mapped to 0.

2. f(n)=1 all combination of input where f gives 1. Complement of f : remaining combination where f(n) gives 0.

3. Check question we are asked about combination where f(n) = 1. But function is complimented that means bracket will give all the terms which will be mapped to 0.(all terms except 15)

4. If you take compliment the result is combination which is mapped to 1.

5. Hence the canonical collection inside bracket represents max terms (mapping to 0) hence sir has written 0 in k map.

+48 votes

Let's First Simplify it 

[D' + AB' + A'C + AC'D + A'C'D ]'

[D' + AB' + A'C + C'D (A + A') ]'     // A + A' =1

[AB' +A'C + (D' + C') (D' + D) ]'    // Apply Distributive Rule Among D' and C'D

[AB' + A'C + D' + C' ]'

[AB' + (A' + C') (C + C') + D'  ] '   //Apply distributive Law B/w A'C and C'

[AB' + A' +C' +D' ]'

[(A+ A') (A' + B') +  C' + D' ]'    //Apply Distributive law b/w AB' and A'

Finally we got

[A' +B' +C' + D' ]'

Apply Demorgan's Law

ABCD

by Boss (45.3k points)
+14 votes
Canonical SOP of the expression D'+AB'+A'C+AC'D+A'C'D is ∑m(0,1,2,3,4,5,6,7,9,13,12,14,11,8,10)

So corresponding POS form is ⫪M(15)

minterm=(maxterm)'

minterm=(A'+B'+C'+D')'=ABCD

Therefore number of minterms = 1
by Junior (531 points)
+7 votes
answer is 1

solve it we get 15 max terms

so no. of min terms are 1
by Active (1.4k points)
+6 votes
on putting some element say A = 0 we solve the boolean expression we get ans = 0; so for all minterms where A=0 function is 0. On taking A=1 we solve the boolean expression and get function = BCD, on K-Map its easy to put value of BCD.

The end result of this gives us only one minterm = ABCD

hence, answer = 1
by Boss (30.7k points)
+6 votes

$F=[D'+AB'+A'C+AC'D+A'C'D]'$

$F'=D'+AB'+A'C+AC'D+A'C'D$

$F'=1.D'+AB'.1+A'.1C+A.1C'D+A'.1C'D$

$F'=(A+A')D'+AB'(C+C')+A'(B+B')C+A(B+B')C'D+A'(B+B')C'D$

$F'=AD'+A'D'+AB'C+AB'C'+A'BC+A'B'C+ABC'D+AB'C'D+A'BC'D+A'B'C'D$

$F'=A.1D'+A.1'D'+AB'C.1+AB'C'.1+A'BC.1+A'B'C.1+ABC'D+AB'C'D+A'BC'D+A'B'C'D$

$F'=A(B+B')D'+A'(B+B')D'+AB'C(D+D')+AB'C'(D+D')+A'BC(D+D')+A'B'C(D+D')+ABC'D+AB'C'D+A'BC'D+A'B'C'D$

$F'=ABD'+AB'D'+A'BD'+A'B'D'+AB'CD+AB'CD'+AB'C'D+AB'C'D'+A'BCD+A'BCD'+A'B'CD+A'B'CD'+ABC'D+AB'C'D+A'BC'D+A'B'C'D$

$F'=AB.1D'+AB'.1D'+A'B.1D'+A'B'.1D'+AB'CD+AB'CD'+AB'C'D+AB'C'D'+A'BCD+A'BCD'+A'B'CD+A'B'CD'+ABC'D+AB'C'D+A'BC'D+A'B'C'D$

$F'=AB(C+C')D'+AB'(C+C')D'+A'B(C+C')D'+A'B'(C+C')D'+AB'CD+AB'CD'+AB'C'D+AB'C'D'+A'BCD+A'BCD'+A'B'CD+A'B'CD'+ABC'D+AB'C'D+A'BC'D+A'B'C'D$

$F'=ABCD'+ABC'D'+AB'CD'+AB'C'D'+A'BCD'+A'BC'D'+A'B'CD'+A'B'C'D'+AB'CD+AB'CD'+AB'C'D+AB'C'D'+A'BCD+A'BCD'+A'B'CD+A'B'CD'+ABC'D+AB'C'D+A'BC'D+A'B'C'D$

Remove similar tearm,because $[X+X=X]$

$F'=ABCD'+ABC'D'+AB'CD'+AB'C'D'+A'BCD'+A'BC'D'+A'B'CD'+A'B'C'D'+AB'CD+AB'C'D+A'BCD+A'B'CD+ABC'D+A'BC'D+A'B'C'D$

Apply both side complement

$(F')'=[ABCD'+ABC'D'+AB'CD'+AB'C'D'+A'BCD'+A'BC'D'+A'B'CD'+A'B'C'D'+AB'CD+AB'C'D+A'BCD+A'B'CD+ABC'D+A'BC'D+A'B'C'D]'$

Apply Demorgan's laws

$(A+B)'=A'.B'$

$(A.B)'=A'+B'$

$F=(A'+B'+C'+D).(A'+B'+C+D).(A'+B+C'+D).(A'+B+C+D).(A+B'+C'+D).(A+B'+C+D).(A+B+C'+D).(A+B+C+D).(A'+B+C'+D').(A'+B+C+D').(A+B'+C'+D').(A+B+C'+D').(A'+B'+C+D').(A+B'+C+D').(A+B+C+D')$                 $[(X')'=X]$

This is Canonical Product Of Sum Term(Maxterm)

$1)A'+B'+C'+D=1110=14$

$2)A'+B'+C+D=1100=12$

$3)A'+B+C'+D=1010=10$

$4)A'+B+C+D=1000=8$

$5)A+B'+C'+D=0110=6$

$6)A+B'+C+D=0100=4$

$7)A+B+C'+D=0010=2$

$8)A+B+C+D=0000=0$

$9)A'+B+C'+D'=1011=11$

$10)A'+B+C+D'=1001=9$

$11)A+B'+C'+D'=0111=7$

$12)A+B+C'+D'=0011=3$

$13)A'+B'+C+D'=1101=13$

$14)A+B'+C+D'=0101=5$

$15)A+B+C+D'=0001=1$

$F(A,B,C,D)=\prod (1,2,3,4,5,6,7,8,9,,10,11,12,13,14)$

$F(A,B,C,D)=\sum (15)$

      $$ \textbf{(OR)}$$

Let's First Simplify it

$F=[D'+AB'+A'C+AC'D+A'C'D]'$

$F=[D'+AB'+A'C+C'D(A+A')]'$

$F=[D'+AB'+A'C+C'D.1]'$        $[A+A'=1]$

$F=[D'+AB'+A'C+C'D]'$

$F=(D')'.(AB')'.(A'C)'.(C'D)'$       [ Using Demorgan's  Law$: (A+B)=A'.B'$  $(or)$ $(A.B)'=A'+B' ]$

$F=(D).(A'+B).(A+C').(C+D')$    [Again using Demorgan's law ]

$F=(A'D+BD).(AC+AD'+C'C+C'D')$   [Simple multiply]

$F=(A'D+BD).(AC+AD'+0+C'D')$     $[C.C'=0]$

$F=(A'D+BD).(AC+AD'+C'D')$

$F=(A'D.AC+A'D.AD'+A'D.C'D'+BD.AC+BD.AD'+BD.C'D')$

$F=ABCD$       $[A.A'=0,D.D'=0]$

    $$\textbf(OR)$$

Let $f(A,B,C,D) = \bigg[D'+AB'+A'C+AC'D+A'C'D\bigg]'$

$\implies \bigg[D'+AB'+A'C+C'D\bigg]'$

$\implies \bigg[D'+C'+ AB' + A'C\bigg]'$

$\implies \bigg[D'+C'+A'+ AB'\bigg]'$

$\implies \bigg[D'+C'+A'+ B'\bigg]'$​​​​​​​

$\implies ABCD$​​​​​​​

So the number of min-terms$=1$

by Veteran (54.8k points)
edited by
0

jatin khachane 1 

see my answer

+2

BTW in the part of your simplification, it can be done in shorter way like this below (especially in the part of distribution).

$\begin{align} F &=\overline{\overline{D}+A\overline{B}+\overline{A}C+A\overline{C}D+\overline{A}\overline{C}D}\\&=\overline{\overline{D}+A\overline{B}+\overline{A}C+\overline{C}D};~~[\because (A+\overline{A})\overline{C}D=1\cdot \overline{C}D]\\&=D(\overline{A}+B)(A+\overline{C})(C+\overline{D});~~[\text{Applying De Morgan's law}]\\&=(\overline{A}+B)(A+\overline{C})(CD+\overline{D}D)\\&=(0+\overline{A}\overline{C}+AB+B\overline{C})(CD+0);~~[\because X\cdot\overline{X}=0]\\&=(\overline{A}\overline{C}+AB+B\overline{C})CD\\&=0+ABCD+0\\&=ABCD \end{align}$

+2 votes
Answer: 1
by Boss (33.8k points)
+2 votes
The minterm we get after minimizing this expression is ABCD.
So, number of minterms is 1.
by Junior (933 points)

Related questions

Quick search syntax
tags tag:apple
author user:martin
title title:apple
content content:apple
exclude -tag:apple
force match +apple
views views:100
score score:10
answers answers:2
is accepted isaccepted:true
is closed isclosed:true
50,648 questions
56,422 answers
195,194 comments
99,832 users