A relation on a set A is by definition a subset R⊆(A×A). Then "a is related to b" means "(a,b)∈R. The empty relation is then just the empty set, so that "a is related to b" is always false.
Hence R= empty set implying it is symmetric,antisymmetric and transitive trivially but not reflexive since by definition any reflexive relation should contain all elements of the form (a,a) for all a in A