in Linear Algebra
2,438 views
23 votes
Obtain the eigen values of the matrix$$A=\begin {bmatrix} 1 & 2 & 34 & 49 \\ 0 & 2 & 43 & 94 \\ 0 & 0 & -2 & 104 \\ 0 & 0 & 0 & -1 \end{bmatrix}$$
in Linear Algebra
2.4k views

Subscribe to GO Classes for GATE CSE 2022

5 Answers

36 votes
 
Best answer

The Eigen values for upper triangular/lower triangular/diagonal matrices are the diagonal elements of the matrix.

$\therefore$ The Eigen values are $1,2,-2,-1.$

edited by
by

3 Comments

we know for triangular/diagonal the determeinant is product of principal diagonal elements so in A-(lambda)I every value of lambda as any of of the principal diagonal elements will give result as 0. so all the diagonal principal diagonal elements are eigen values.
0
edited by

$\color{Purple}{\text{Important Properties Of Eigen Values:-}}$

$(1)$Sum of all eigen values$=$Sum of leading diagonal(principle diagonal) elements=Trace of the matrix.

$(2)$ Product of all Eigen values$=Det(A)= \mid A\mid$

$(3)$ Any square diagonal(lower triangular or upper triangular) matrix eigen values are leading diagonal (principle diagonal)elements itself.

Example$:$$A=\begin{bmatrix} 1& 0& 0\\ 0&1 &0 \\ 0& 0& 1\end{bmatrix}$

    Diagonal matrix

  Eigenvalues are $1,1,1$

$B=\begin{bmatrix} 1& 9& 6\\ 0&1 &12 \\ 0& 0& 1\end{bmatrix}$

Upper triangular matrix

  Eigenvalues are $1,1,1$

$C=\begin{bmatrix} 1& 0& 0\\ 8&1 &0 \\ 2& 3& 1\end{bmatrix}$

Lower triangular matrix

  Eigenvalues are $1,1,1$

13
The "5(a)" in your answer looks very confusing. Please make an edit.
1
13 votes
$A=\begin{bmatrix} 1& 2 &34 &49\\ 0& 2&43 &94\\ 0& 0 & -2&104\\ 0& 0& 0&-1 \end{bmatrix}$

$|A-\lambda I |=0$

$\begin{vmatrix} 1-\lambda& 2 &34 &49\\ 0& 2-\lambda&43 &94\\ 0& 0 & -2-\lambda&104\\ 0& 0& 0&-1-\lambda \end{vmatrix}=0$

$( 1-\lambda)( 2-\lambda)( -2-\lambda)(-1-\lambda)=0$

$\lambda=1\ ,\ -1\ ,\ 2 \ , \ -2$
1 vote
Eigen value $lambda$=1,-1,2,-2 A-$lambda$I=0 just solve it and for the 2nd question i think building a truth table is a naive way of answering it if any1 has better solution then plz reply
0 votes
if the matrix is either upper triangular or lower triangular matrix then the principal diagonal element are called eigen value.
1,2,-1,-2 for this question ...
0 votes
The Eigen values for upper triangular,lower triangular,diagonal and scaler matrices has its  diagonal elements of the matrix.

so eigen values are=1,2,-2,-1.

Related questions

Ask
Quick search syntax
tags tag:apple
author user:martin
title title:apple
content content:apple
exclude -tag:apple
force match +apple
views views:100
score score:10
answers answers:2
is accepted isaccepted:true
is closed isclosed:true