+19 votes
1.7k views
1. Express the function $f(x,y,z) = xy' + yz'$ with only one complement operation and one or more AND/OR operations. Draw the logic circuit implementing the expression obtained, using a single NOT gate and one or more AND/OR gates.
2. Transform the following logic circuit (without expressing  its switching function) into an equivalent logic circuit that employs only $6$ NAND gates each with $2$-inputs. edited | 1.7k views

## 4 Answers

+28 votes
Best answer

$f(x,y,z)=xy'+yz' =xy'z'+xy'z+x'yz'+xyz'$

$f(x,y,z)=\sum_m(2,4,5,6)$ K-map

By pairing of $1's$, we get two pairs $(2,6),(4,5)$ resulting in same expression $F= xy'+yz'$

But by pairing of $0's$, we get two pairs $(0,1),(2,7)$, we get $F'= yz+x'y'$

Take complement, $F= \overline{(yz)}.(x+y)$

so we can implement the function with $1$ NOT , $1$ OR and $2$ AND gates.

For the second part , we need to implement given circuit using NANDs only.

so best way is to replace OR with Invert NAND, $A+B = \overline{(\bar A\bar B)}$     by Veteran (56.4k points)
edited
0
second last diagram is the key
+1
Yes it does but, xy'+xz'+yz' == xy'+yz'
0
Salute you @praveen sir
+3 votes This is answer for part b of this Questions. Drawing the given circuit with 6 NAND gates.

by Boss (41.1k points)
edited
+3 votes
For 1st part make equation using AND and OR

like give  x AND  gate y => to not gate u get x'+ y'

now give x OR gate  y= x+y now do

X' + Y' AND gate (X+Y)= x'y + y'x
by Veteran (62.2k points)
+3
We have got three variable, x & y & z !
0 votes
First part of question

xy'+yz'

(xy'+y). (xy'+z')

(x+y). (xy'+z')

(xy'+x+y). (z'+x+y)

(x+y). (z'+x+y)

1 NOT gate

1 AND gate

2 OR gates
by Active (2.2k points)

+6 votes
1 answer
2
+18 votes
2 answers
3
+25 votes
2 answers
4
+33 votes
2 answers
5
+16 votes
1 answer
6
+15 votes
3 answers
7