Let $\Sigma = \left\{a, b, c, d, e\right\}$ be an alphabet. We define an encoding scheme as follows:
$g(a) = 3, g(b) = 5, g(c) = 7, g(d) = 9, g(e) = 11$.
Let $p_i$ denote the ith prime number $\left(p_1 = 2\right)$.
For a nonempty string $s=a_1 \dots a_n$, where each $a_i \in \Sigma$, define $f(s)= \Pi^n_{i=1}P_i^{g(a_i)}$.
For a nonempty sequence$\left \langle s_j, \dots,s_n\right \rangle$ of stings from $\Sigma^+$, define $h\left(\left \langle s_i \dots s_n\right \rangle\right)=\Pi^n_{i=1}P_i^{f\left(s_i\right)}$
Which of the following numbers is the encoding, $h$, of a nonempty sequence of strings?

$2^73^75^7$

$2^83^85^8$

$2^93^95^9$

$2^{10}3^{10}5^{10}$