edited by
5,255 views
4 votes
4 votes

Number of non negative integer solutions to the equation X1 + X2 + X3 + X4 = 15, where $1 \leqslant X1,X2,X3,X4 \leqslant6$ is ________

edited by

3 Answers

Best answer
5 votes
5 votes

$$\begin{align*} Equation,\\ &\Rightarrow x_1+x_2+x_3+x_4 = 15 \;\;\; 1\leq x_i\leq 6 \\ &\Rightarrow y_1+y_2+y_3+y_4 = 11 \;\;\; 0\leq y_i\leq 5 \\ \end{align*}$$

Using $\large\color{green}{\text{generating function}}$ $\rightarrow$

$$\begin{align*} &=\left [ y^{11} \right ]\left [ \frac{1-y^6}{1-y} \right ]^{4} \\ &=\left [ y^{11} \right ]\left [ \sum_{r=0}^{4}\binom{4}{r}(-1)^r.y^{6r} \right ] \ \left [ \sum_{r=0}^{\infty}\binom{3+r}{r}.y^r \right ] \\ &=1*\binom{14}{11} + (-1)^1.4.\binom{8}{5} \;\;\;\;\; \left \{ \text{for } r=(0,11) \;\; \text{and }\;\; r=(1,5) \right \} \\ &=140 \end{align*}$$


more example:

NOTE:

1. $1+x+x^2+x^3+.....x^n = \frac{1-x^{n+1}}{1-x}$

2. $\frac{1}{(1-x)^n} = \sum_{r=0}^{\infty}\binom{n+r-1}{r}.x^r$

3. $\left [ x^{11} \right ]$ means coefficient of $x^{11}$ of the whole expression.

selected by
2 votes
2 votes

140 is the right answer i think.

0 votes
0 votes

They are asking for number of solutions where x1>= 1  and x2,x3,x4 <=6

Method 1: Inclusion-Exclusion

Lets find total solutions where x1>= 1.

So, x1 + 1 + x2 + x + x4 = 15

So, that comes as   $\binom{17}{3}$   = 680   ............(1)

Now, we need to find solution where (x2>=7 or x3>=7 or x4>=7).

Lets denote such events as E(x2>=7 or x3>=7 or x4>=7).

$\therefore$ E(x2>=7 or x3>=7 or x4>=7)

= E(x2>=7) + E(x3>=7) + E(x4>=7) - E(x2>=7 $\cap$ x3>=7) - E(x4>=7 $\cap$ x3>=7) - E(x4>=7 $\cap$ x2>=7)  ..........(2)

   (only 2 of x2, x3, x4 can be more than 7 at the same time)

Now, when x2>=7, then equation will become x1 + 1 + x2 + 7 + x + x4 = 15

Thus, E(x2>=7) = $\binom{10}{3}$ = 120

$\therefore$ E(x2>=7 or x3>=7 or x4>=7) = 120 + 120 + 120 - 1 - 1 - 1 = 357

Thus, answer = 680 - 357 = 323

============================================================

Method 2: Generating functions

For the given equation, generating function is as follows:

(x1 + x2 + .......+ x15) ( 1+ x1 + .....+ x6)  ( 1+ x1 + .....+ x6)  ( 1+ x1 + .....+ x6)

We have to find coefficient of x15 in the above equation.

So, above equation becomes

= (x1 + x2 + .......+ x15) ( 1+ x1 + .....+ x6)3

= x1(x0 + x1 + .....+ x14)( 1+ x1 + .....+ x6)3

= x1 * $\frac{1-x^{15}}{1-x}$  *  $(\frac{1-x^{7}}{1-x})^{3}$

Now, we cancel $x^{15}$ in the second term because we need max of x14 from second and third terms.

So, above equation becomes

= x1 * $(1-x^{7})^{3}$ * $(1-x)^{4}$

= x* (1 - 3x + 3x14) * ( 680x14 + 120x7 + 1)    

I have selected only those components out of expansion for $(1-x)^{4}$ which will give me x14 out of second and third components above.

So, just calculating the coefficients of x14 from above equation,

answer = 323

Related questions

0 votes
0 votes
0 answers
1
Lakshman Bhaiya asked Oct 24, 2018
388 views
Suppose that a solution $(X,Y,Z)$ of the equation $X+Y+Z=20,$with $X,Y$ and $Z$ non-negative integers,is chosen at random.What is the probability that $X$ is divisible by...
28 votes
28 votes
3 answers
3
2 votes
2 votes
3 answers
4
A_i_$_h asked Oct 9, 2017
2,525 views
Number of non negative integer solutions such that $x + y + z = 17$ where $x>1,\ y>2,\ z>3$