# GATE1988-12iia

259 views
Using Armstrong’s axioms of functional dependency derive the following rules:

$\{ x \rightarrow y, \: x \rightarrow z \} \mid= x \rightarrow yz$

(Note: $x \rightarrow y$ denotes $y$ is functionally dependent on $x$, $z \subseteq y$ denotes $z$ is subset of $y$, and $\mid =$ means derives).

$x \rightarrow z$  (Given)

$\implies xx \rightarrow zx$ (Axiom of augmentation)  $\qquad \to(I)$

Also $x \rightarrow y$ (Given)

$\implies xz \rightarrow yz$ (Axiom of augmentation) $\qquad \to (II)$

Using $(I)$ and $(II)$ we get

$xx \rightarrow yz$ (Axiom of transitivity)

$\implies x \rightarrow yz$

selected by

## Related questions

1
253 views
Using Armstrong’s axioms of functional dependency derive the following rules: $\{ x \rightarrow y, \: z \subset y \} \mid= x \rightarrow z$ (Note: $x \rightarrow y$ denotes $y$ is functionally dependent on $x$, $z \subseteq y$ denotes $z$ is subset of $y$, and $\mid =$ means derives).
Using Armstrong’s axioms of functional dependency derive the following rules: $\{ x \rightarrow y, \: wy \rightarrow z \} \mid= xw \rightarrow z$ (Note: $x \rightarrow y$ denotes $y$ is functionally dependent on $x$, $z \subseteq y$ denotes $z$ is subset of $y$, and $\mid =$ means derives).
Three switching functions $f_1, \: f_2 \:$ and $f_3$ are expressed below as sum of minterms. $f_1 (w, x, y, z) = \sum \: 0, 1, 2, 3, 5, 12$ $f_2 (w, x, y, z) = \sum \: 0, 1, 2, 10, 13, 14, 15$ $f_3 (w, x, y, z) = \sum \: 2, 4, 5, 8$ Express the function $f$ realised by the circuit shown in the below figure as the sum of minterms (in decimal notation).