Using Armstrong’s axioms of functional dependency derive the following rules:

$\{ x \rightarrow y, \: wy \rightarrow z \} \mid= xw \rightarrow z$

(Note: $x \rightarrow y$ denotes $y$ is functionally dependent on $x$, $z \subseteq y$ denotes $z$ is subset of $y$, and $\mid =$ means derives).