The Gateway to Computer Science Excellence
0 votes

Consider the following well-formed formula:

  • $\exists x \forall y [ \neg \: \exists z [ p (y, z) \wedge p (z, y) ] \equiv p(x,y)]$

Express the above well-formed formula in clausal form.

in Mathematical Logic by | 209 views

1 Answer

+3 votes
&\quad \exists x \forall y \Biggl[ \color{blue}{\neg \: \exists z \Bigl [ p (y, z) \land p (z, y) \Bigr ]} \; \equiv \; \color{green}{p(x,y)} \Biggr ] \\[1em]
\equiv&\quad \exists x \forall y \Biggl [ \color{blue}{\neg \: \exists z \Bigl [ p (y, z) \land p (z, y) \Bigr ]} \longleftrightarrow \color{green}{p(x,y)} \Biggr ] \\[1em]
\equiv&\quad \exists x \forall y \Biggl [ \Bigl [\color{blue}{\neg \exists z \bigl [ p (y, z) \land p (z, y) \bigr ]} \land \color{green}{p(x,y)} \Bigr ] \lor  \Bigl [ \color{red}{\neg} \color{blue}{\neg \exists z \bigl [ p (y, z) \lor \neg p (z, y) \bigr ]} \land \color{red}{\neg} \color{green}{p(x,y)} \Bigr ] \Biggr ] \\[1em]
\equiv&\quad \exists x \forall y \Biggl [ \Bigl [\color{blue}{\neg \: \exists z \bigl [ p (y, z) \land p (z, y) \bigr ]} \land \color{green}{p(x,y)} \Bigr ] \; \lor \;  \Bigl [ \exists z \bigl [ p (y, z) \lor \neg p (z, y) \bigr ] \land \neg p(x,y) \Bigr ] \Biggr ]

Conversion not complete...
edited by

@Arjun sir

what is clausal form??


You can see here:

This answer is not complete; but is out of GATE syllabus -- was part of logic programming I believe. 

Related questions

Quick search syntax
tags tag:apple
author user:martin
title title:apple
content content:apple
exclude -tag:apple
force match +apple
views views:100
score score:10
answers answers:2
is accepted isaccepted:true
is closed isclosed:true
52,345 questions
60,513 answers
95,361 users