in Linear Algebra retagged by
371 views
0 votes
0 votes
If $x \| \underline{x} \| \infty = 1< i^{max} < n \: \: max \: \: ( \mid x1 \mid ) $ for the vector $\underline{x} = (x1, x2 \dots x_n)$ and $\| A \| \infty = x^{Sup} \frac{\| A \underline{x} \| \infty}{\| \underline{x} \| \infty}$ is the corresponding matrix norm, calculate $\| A \|_o$ for the matrix $A=\begin{bmatrix} 2 & 5 & 9 \\ 4 & 6 & 5 \\ 8 & 2 & 3 \end{bmatrix}$ using a known property of this norm.

Although this norm is very easy to calculate for any matrix, explain why the condition number is difficult (i.e. expensive) to calculate.
in Linear Algebra retagged by
371 views

Please log in or register to answer this question.

Related questions