The Gateway to Computer Science Excellence
First time here? Checkout the FAQ!
x
0 votes
118 views
If $x \| \underline{x} \| \infty = 1< i^{max} < n \: \: max \: \: ( \mid x1 \mid ) $ for the vector $\underline{x} = (x1, x2 \dots x_n)$ and $\| A \| \infty = x^{Sup} \frac{\| A \underline{x} \| \infty}{\| \underline{x} \| \infty}$ is the corresponding matrix norm, calculate $\| A \|_o$ for the matrix $A=\begin{bmatrix} 2 & 5 & 9 \\ 4 & 6 & 5 \\ 8 & 2 & 3 \end{bmatrix}$ using a known property of this norm.

Although this norm is very easy to calculate for any matrix, explain why the condition number is difficult (i.e. expensive) to calculate.
asked in Linear Algebra by Veteran (99.8k points) | 118 views

Please log in or register to answer this question.

Related questions



Quick search syntax
tags tag:apple
author user:martin
title title:apple
content content:apple
exclude -tag:apple
force match +apple
views views:100
score score:10
answers answers:2
is accepted isaccepted:true
is closed isclosed:true

37,980 questions
45,481 answers
131,420 comments
48,452 users