4,042 views
22 votes
22 votes

Which of the following functions asymptotically grows the fastest as $n$ goes to infinity?

  1. $(\log \: \log \: n)!$
  2. $(\log \: \log \: n)^ {\log \: n}$
  3. $(\log \: \log \: n)^{\log \: \log \: \log \: n}$
  4. $(\log \: n)^{\log \: \log \: n}$
  5. $2^{\sqrt{\log \: \log \: n}}$

3 Answers

Best answer
33 votes
33 votes

Let $N = 2^{256}$

  1. $(\log \log N)! = 8!$
  2. $(\log \log N)^{\log N} = (8)^{256} = 2^{768}$
  3. $(\log \log N)^{\log\log \log N} = 8^{3}=512$
  4. $(\log N)^{\log\log N} = (256)^{8}=2^{64}$
  5. $2^{\sqrt{\log \log N}} = 2^{2\sqrt 2}$

Let $N = 2^{16}$

  1. $(\log \log N)! = 4!$
  2. $(\log \log N)^{\log N} = (4)^{16} = 2^{32}$
  3. $(\log \log N)^{\log\log \log N} = 4^{2}=16$
  4. $(\log N)^{\log\log N} = (16)^{4}=2^{16}$
  5. $2^{\sqrt{\log \log N}} = 2^{2}=4$

Taking ratio for both $N$ values,

  1. $(\log \log N)! \rightarrow 8!/4!$
  2. $(\log \log N)^{\log N} \rightarrow  2^{736}$
  3. $(\log \log N)^{\log\log \log N} \rightarrow 32$
  4. $(\log N)^{\log\log N} \rightarrow 2^{48}$
  5. $2^{\sqrt{\log \log N}} \rightarrow \approx 2$

Option $B$ = $(\log \log N)^{\log N}$ asymptotically grows the fastest, as for the same change in $N$, the value increased the most (growth) for option $B$ and this growth is monotonic (continuous).

selected by
22 votes
22 votes

Let's substitute $\log \log x$ as "$x$":

  1. $(\log \: \log \: n)!$
    • $x!$
  2. $(\log \: \log \: n)^ {\log \: n}$
    • $x^{2^x}$
  3. $(\log \: \log \: n)^{\log \: \log \: \log \: n}$
    • $x^{\log x}$
  4. $(\log \: n)^{\log \: \log \: n}$
    • $2^{x*x}$
  5. $2^{\sqrt{\log \: \log \: n}}$
    • $2^{\sqrt x}$

Now it might be easier to see that option B grows faster.

1 votes
1 votes

or we can simply see like this,

$(log log n)! $ we can write lik this =$(log log n)^{log log n}$ ,suppose $(log log n)$=$y$

a.$y^y$=taking log $\rightarrow $ y log y

b.$y^{log \ n}$=taking log $\rightarrow $$ logn \ y$

c.$y^{log \ y}$=taking log $\rightarrow $ log y.y

d.$log n ^{ y}$=taking log $\rightarrow $ y.log log n

e.$2^\sqrt{y}$=taking log $\rightarrow $$\sqrt{y}$.log 2

when put value of y then we can see only  option (b) is greater than all others because it has log n . others does not have simple log n

Answer:

Related questions