GATE CSE
First time here? Checkout the FAQ!
x
0 votes
110 views
$\lim_{x\rightarrow \pi } (1+\cos x)/\tan ^{2}x$
asked in Calculus by Active (1.5k points) 3 25 42
retagged by | 110 views

L $= \frac{1+cos\ x}{tan^2\ x}\\= \frac{1+cos\ x}{sec^2\ x-1}\\ = \frac{1+cos\ x}{ \frac{1-cos^2\ x}{cos^2\ x}}\\ = \frac{(cos^2\ x)(1+cos\ x)}{(1-cos\ x)(1+cos\ x)}\\= \frac{cos^2\ x}{1-cos\ x}$

$\lim_{x \to \pi} L =\lim_{x \to \pi} \frac{cos^2\ x}{1-cos\ x} = \frac{cos^2\ \pi}{1-cos\ \pi}=\frac{(-1)^2}{1-(-1)} = \frac{1}{2}$

1 Answer

+3 votes
Best answer
$

\lim_{x\rightarrow \pi } (1+\cos x)/\tan ^{2}x $

applying l hospital

$ \lim_{x\rightarrow \pi } (-\sin x)/2*\tan x*sec^{2}x $

it will be

$\lim_{x\rightarrow \pi } (-1)/2*\sec x$

substituting ans will be 1/2
answered by Veteran (10.6k points) 7 17 54
selected by

Related questions

+3 votes
3 answers
1
asked in Calculus by Vicky rix Loyal (4.9k points) 3 36 123 | 75 views
+1 vote
1 answer
2


Quick search syntax
tags tag:apple
author user:martin
title title:apple
content content:apple
exclude -tag:apple
force match +apple
views views:100
score score:10
answers answers:2
is accepted isaccepted:true
is closed isclosed:true
Top Users Oct 2017
  1. Arjun

    23684 Points

  2. Bikram

    17288 Points

  3. Habibkhan

    9194 Points

  4. srestha

    6486 Points

  5. Debashish Deka

    5478 Points

  6. jothee

    5168 Points

  7. Sachin Mittal 1

    4910 Points

  8. joshi_nitish

    4504 Points

  9. sushmita

    4078 Points

  10. Rishi yadav

    3998 Points


Recent Badges

Nice Comment Pooja Palod
Famous Question Harsh181996
Verified Human ASK
Good Comment Bikram
Good Comment Arjun
Nice Comment Arjun
Famous Question Meenakshi Sharma
Famous Question Meenakshi Sharma
Nice Question smartmeet
Nice Comment Vicky rix
27,426 questions
35,275 answers
84,602 comments
33,523 users