GATE CSE
First time here? Checkout the FAQ!
x
+1 vote
345 views

1)For three events A, B and C, we know that

  • A and C are independent
    B and C are independent
    A and B are disjoint
    P(A∪C)=2/3 P(B∪C)=3/4 P(A∪B∪C)=11/12


P(A)=___________  ans  1/3

 

2)Consider independent trails consisting of rolling a pair of fair dice, over and over. What is the probability that a sum of 5 appears before sum of 7? ans 2/5

 

asked in Probability by Active (2.4k points) 4 25 52 | 345 views

1 Answer

+5 votes
Best answer

Answer to question no 1 :

Given A and B are disjoint , so P( A ∩  B )  = 0

Given B and C are independent  =  P(B ∩  C)  =  P(B) . P(C)

          A and C are independent  = P(A ∩  C)  = P(A) . P(C)

As A and B are disjoint , then A , B and C will obviosuly be disjoint which is the trick of the question.

We know , 

           P(A U B U C) = P(A) + P(B) + P(C) - P( A ∩  B ) - P(B ∩  C) - P(A  ∩  C)  +  P(A ∩  B   ∩  C)

==>     11 / 12        =  x + y + z  - yz - xz   [ Say ]   ..............(1)

          P(B U C)      =   3 /4

==>    P(B) + P(C) - P(B ∩  C)  =  3 /4 

==>     y + z  - yz    =   3 / 4      .....(2)

Substituting in (1) , we have :

==>   11 / 12     =   x +  ( 3 / 4 )  -  xz  .............(3)

  

Also   P(A U C)  =  2 / 3

==>   P(A) + P(C) - P(A).P(C)  =  2 / 3

==>   x  + z  -  xz   = 2 / 3

==>   x  -  xz   =  2/3 - z

So substituting this in (3) , we have :

       11 / 12  =  (2 / 3   -  z)  +  (3 / 4)

==>  z         =  (2 / 3 + 3 / 4  - 11 / 12)

==>  z         =   6 / 12

 

Now x - xz  =  2/3 - z

==> x - 1/2x  = 2/3 - 1 /2

==> 1/2 x    = 1 / 6

==>  x       =  1 / 3

Therefore P(A)  =  1 / 3

 

Answer to 2nd question :

You are interested that the game will end where you first get sum of 5, and that it will happen before the first "sum if 7". Hence, by noting that the first event has 4 elementary outcomes(i.e. of sum of 5) while the second has 6(i.e. of sum of 7)..

So this can be done by in the first "n-1" trials , the remaining 26 ( 36 - 4 - 6 ) outcomes can come and in the nth trial , we need to ensure that only these 4 outcomes which constitute sum of 5 comes..That way we can ensure that sum of 5 will come definitely before sum of 7..So an infinite G.P. will perform as n can be any natural number ranging from 1 to infinity [In the very 1st trial we can get sum of 5 and then we are done..But we need to consider all cases m so infinite G.P will form as ] :

P(5 comes before 7 as sum in 2 dices)  =  (4 / 36) + (26 / 36) * (4 / 36) + (26 / 36)2 * (4 / 36) ..............to infinity

                                                          =  (4 /  36) [ 1 + (26 / 36) + (26 / 36)2 + .................. ]

                                                          =  ( 1 / 9 ) * [1 / ( 1  -  (26 / 36) }

                                                         =    1 / 9 * (36 / 10) 

                                                         =    4 / 10

                                                         =    2 / 5

Hence 2 / 5 is required probability here..

answered by Veteran (88.6k points) 15 58 294
selected by


Quick search syntax
tags tag:apple
author user:martin
title title:apple
content content:apple
exclude -tag:apple
force match +apple
views views:100
score score:10
answers answers:2
is accepted isaccepted:true
is closed isclosed:true
Top Users Oct 2017
  1. Arjun

    23398 Points

  2. Bikram

    17078 Points

  3. Habibkhan

    8280 Points

  4. srestha

    6300 Points

  5. Debashish Deka

    5438 Points

  6. jothee

    4978 Points

  7. Sachin Mittal 1

    4772 Points

  8. joshi_nitish

    4348 Points

  9. sushmita

    3970 Points

  10. Rishi yadav

    3804 Points


Recent Badges

Commentator Shivam Chauhan
Notable Question set2018
Nice Comment srestha
Notable Question set2018
Regular Shankar Jha
Popular Question Shubhanshu
Good Comment mcjoshi
Notable Question antarachoudhury
Popular Question shweta12345
Good Comment Rohan Mundhey
27,325 questions
35,176 answers
84,122 comments
33,280 users