edited by
9,893 views
44 votes
44 votes

$F$ is an $n\times n$ real matrix. $b$ is an $n\times 1$ real vector. Suppose there are two $n\times 1$ vectors, $u$ and $v$ such that, $u ≠ v$ and $Fu = b, Fv = b$. Which one of the following statements is false?

  1.    Determinant of $F$ is zero.  
  2.    There are an infinite number of solutions to $Fx = b$
  3.    There is an $x≠0$ such that $Fx = 0$
  4.    $F$ must have two identical rows
edited by

5 Answers

Best answer
51 votes
51 votes

(A) : Correct. We are given

$$Fu = b$$

$$Fv = b$$

So $F(u-v) = 0$

Since $u \neq v$, so we have a non-zero solution $w = (u-v)$ to homogeneous equation $Fx=0$. Now any vector $\lambda w$ is also a solution of $Fx=0$, and so we have infinitely many solutions of $Fx=0$, and so determinant of F is zero.

(B) : Correct. Consider a vector $u+\lambda w$.

$$F(u+\lambda w) = Fu+F(\lambda w) = b + 0 = b$$

So there are infinitely many vectors of the form $u+\lambda w$, which are solutions to equation $Fx=b$.

(C) : Correct. In option (a), we proved that vector $(u-v) \neq 0$ satisfies equation $Fx=0$.

(D) : False. This is not necessary.

So, option $(D)$ is the answer.

edited by
19 votes
19 votes
Since Fu = b, and also Fv = b, so we have (Fu - Fb) = 0 i.e. F(u-v) = 0. Since u≠v, F is a singular matrix i.e. its determinant is 0. Now for a singular matrix F, either Fx = b has no solution or infinitely many solutions, but as we are already given two solutions u and v for x, Fx = b has to have infinitely many solutions. Moreover, by definition of singular matrix, there exists an x≠0 such that Fx = 0 . So options (A), (B), and (C) are true. Option (D) is false because it may not be necessary that two rows are identical, instead, two columns can be identical and we can get F as singular matrix then. So option (D) is correct
15 votes
15 votes
there are more than two vectors satisfying equation FX=0 that means infinite solution exist...

determinant is 0 rank is less than n

but for determinant to be zero its not necessary to have two identical rows

so d is the answer
13 votes
13 votes

A nxn homogeneous system of linear equations has a unique solution (the trivial solution) if and only if its determinant is non-zero.

If this determinant is zero, then the system has an infinite number of solutions.

A nxn non-homogeneous system of linear equations has a unique non-trivial solution if and only if its determinant is non-zero.

If this determinant is zero, then the system has either no nontrivial solutions or an infinite number of solutions.  

Source :  https://math.oregonstate.edu/home/programs/undergrad/CalculusQuestStudyGuides/vcalc/system/system.html

Now, let's look at the given options.

(a) True. Since $F x = b$ is non-homogeneous and has more than one solutions (u and v), determinant of $F$ is surely $0$.

(b) True. Infinitely many solutions are possible.

(c) This option talks about $F x = 0$ which is a homogeneous equation. Since, $\left | F \right | = 0$, thus $x \neq 0$. $\therefore$ True

(d) This option says that $\left | F \right | = 0$ only because of two identical rows in $F$. But this is not necessary.

Answer is (d).

 

Answer:

Related questions

2 votes
2 votes
2 answers
1
Bikram asked Aug 8, 2016
339 views
If the determinant of an $n \times n$ matrix $A$ is zero thenrank of $A$ is $n$rank of $A\leq n-2$$A$ has at least one zero eigen valuethe system of equations $Ax=0$ has ...
8 votes
8 votes
3 answers
3
go_editor asked Dec 20, 2016
3,274 views
Assume that the matrix $A$ given below, has factorization of the form $LU=PA$, where $L$ is lower-triangular with all diagonal elements equal to $1, U$ is upper-triangula...