A logical binary relation $\odot$, is defined as follows:
$$\begin{array}{|l|l|l|} \hline \textbf{A} & \textbf{B}& \textbf{A} \odot \textbf{B}\\\hline \text{True} & \text{True}& \text{True}\\\hline \text{True} & \text{False}& \text{True}\\\hline \text{False} & \text{True}& \text{False}\\\hline \text{False} & \text{False}& \text{True}\\\hline \end{array}$$
Let $\sim$ be the unary negation (NOT) operator, with higher precedence then $\odot$.
Which one of the following is equivalent to $A\wedge B$ ?
- $(\sim A\odot B)$
- $\sim(A \odot \sim B)$
- $\sim(\sim A\odot\sim B)$
- $\sim(\sim A\odot B)$