
1

19.2 View Serializability

Recall our discussion in Section ?? of how our true goal in the design of a
scheduler is to allow only schedules that are serializable. We also saw how dif-
ferences in what operations transactions apply to the data can a�ect whether
or not a given schedule is serializable. We also learned in Section ?? that sched-
ulers normally enforce \conict serializability," which guarantees serializability
regardless of what the transactions do with their data.

However, there are weaker conditions than conict-serializability that also
guarantee serializability. In this section we shall consider one such condition,
called \view-serializability." Intuitively, view-serializability considers all the
connections between transactions T and U such that T writes a database el-
ement whose value U reads. The key di�erence between view- and conict-
serializability appears when a transaction T writes a value A that no other
transaction reads (because some other transaction later writes its own value for
A). In that case, the wT (A) action can be placed in certain other positions
of the schedule (where A is likewise never read) that would not be permitted
under the de�nition of conict-serializability. In this section, we shall de�ne
view-serializability precisely and give a test for it.

19.2.1 View Equivalence

Suppose we have two schedules S1 and S2 of the same set of transactions.
Imagine that there is a hypothetical transaction T0 that wrote initial values for
each database element read by any transaction in the schedules, and another
hypothetical transaction Tf that reads every element written by one or more
transactions after each schedule ends. Then for every read action ri(A) in one
of the schedules, we can �nd the write action wj(A) that most closely preceded
the read in question.1 We say Tj is the source of the read action ri(A). Note
that transaction Tj could be the hypothetical initial transaction T0, and Ti
could be Tf .

If for every read action in one of the schedules, its source is the same in
the other schedule, we say that S1 and S2 are view-equivalent. Surely, view-
equivalent schedules are truly equivalent; they each do the same when executed
on any one database state. If a schedule S is view-equivalent to a serial schedule,
we say S is view-serializable.

Example 19.1 : Consider the schedule S de�ned by:

T1: r1(A) w1(B)
T2: r2(B) w2(A) w2(B)
T3: r3(A) w3(B)

1While we have not previously prevented a transaction from writing an element twice,

there is generally no need for it to do so, and in this study it is useful to assume that a

transaction only writes a given element once.



2

Notice that we have separated the actions of each transaction vertically, to
indicate better which transaction does what; you should read the schedule from
left-to-right, as usual.

In S, both T1 and T2 write values of B that are lost; only the value of
B written by T3 survives to the end of the schedule and is \read" by the
hypothetical transaction Tf . S is not conict-serializable. To see why, �rst note
that T2 writes A before T1 reads A, so T2 must precede T1 in a hypothetical
conict-equivalent serial schedule. The fact that the action w1(B) precedes
w2(B) also forces T1 to precede T2 in any conict-equivalent serial schedule.
Yet neither w1(B) nor w2(B) has any long-term a�ect on the database. It is
these sorts of irrelevant writes that view-serializability is able to ignore, when
determining the true constraints on an equivalent serial schedule.

More precisely, let us consider the sources of all the reads in S:

1. The source of r2(B) is T0, since there is no prior write of B in S.

2. The source of r1(A) is T2, since T2 most recently wrote A before the read.

3. Likewise, the source of r3(A) is T2.

4. The source of the hypothetical read of A by Tf is T2.

5. The source of the hypothetical read of B by Tf is T3, the last writer of B.

Of course, T0 appears before all real transactions in any schedule, and Tf ap-
pears after all transactions. If we order the real transactions (T2; T1; T3), then
the sources of all reads are the same as in schedule S. That is, T2 reads B, and
surely T0 is the previous \writer." T1 reads A, but T2 already wrote A, so the
source of r1(A) is T2, as in S. T3 also reads A, but since the prior T2 wrote A,
that is the source of r3(A), as in S. Finally, the hypothetical Tf reads A and
B, but the last writers of A and B in the schedule (T2; T1; T3) are T2 and T3 re-
spectively, also as in S. We conclude that S is a view-serializable schedule, and
the schedule represented by the order (T2; T1; T3) is a view-equivalent schedule.
2

19.2.2 Polygraphs and the Test for View-Serializability

There is a generalization of the precedence graph, which we used to test conict
serializability in Section ??, that reects all the precedence constraints required
by the de�nition of view serializability. We de�ne the polygraph for a schedule
to consist of the following:

1. A node for each transaction and additional nodes for the hypothetical
transactions T0 and Tf .

2. For each action ri(X) with source Tj , place an arc from Tj to Ti.



19.2. VIEW SERIALIZABILITY 3

3. Suppose Tj is the source of a read ri(X), and Tk is another writer of X.
It is not allowed for Tk to intervene between Tj and Ti, so it must appear
either before Tj or after Ti. We represent this condition by an arc pair

(shown dashed) from Tk to Tj and from Ti to Tk. Intuitively, one or the
other of an arc pair is \real," but we don't care which, and when we try
to make the polygraph acyclic, we can pick whichever of the pair helps to
make it acyclic. However, there are important special cases where the arc
pair becomes a single arc:

(a) If Tj is T0, then it is not possible for Tk to appear before Tj, so we
use an arc Ti ! Tk in place of the arc pair.

(b) If Ti is Tf , then Tk cannot follow Ti, so we use an arc Tk ! Tj in
place of the arc pair.

TfT T T T0 1 2 3

A

A

B

A B

Figure 19.1: Beginning of polygraph for Example 19.2

Example 19.2 : Consider the schedule S from Example 19.1. We show in
Fig. 19.1 the beginning of the polygraph for S, where only the nodes and the
arcs from rule (2) have been placed. We have also indicated the database
element causing each arc. That is, A is passed from T2 to T1, T3, and Tf , while
B is passed from T0 to T2 and from T3 to Tf .

Now, we must consider what transactions might interfere with each of these
�ve connections by writing the same element between them. These potential
interferences are ruled out by the arc pairs from rule (3), although as we shall
see, in this example each of the arc pairs involves a special case and becomes a
single arc.

Consider the arc T2 ! T1 based on element A. The only writers of A are T0
and T2, and neither of them can get in the middle of this arc, since T0 cannot
move its position, and T2 is already an end of the arc. Thus, no additional arcs
are needed. A similar argument tells us no additional arcs are needed to keep
writers of A outside the arcs T2 ! T3 and T2 ! Tf .

Now consider the arcs based on B. Note that T0, T1, T2, and T3 all write
B. Consider the arc T0 ! T2 �rst. T1 and T3 are other writers of B; T0 and T2
also write B, but as we saw, the arc ends cannot cause interference, so we need
not consider them. As we cannot place T1 between T0 and T2, in principle we
need the arc pair (T1 ! T0; T2 ! T1). However, nothing can precede T0, so
the option T1 ! T0 is not possible. We may in this special case just add the



4

arc T2 ! T1 to the polygraph. But this arc is already there because of A, so in
e�ect, we make no change to the polygraph to keep T1 outside the arc T0 ! T2.

We also cannot place T3 between T0 and T2. Similar reasoning tells us to
add the arc T2 ! T3, rather than an arc pair. However, this arc too is already
in the polygraph because of A, so we make no change.

Next, consider the arc T3 ! Tf . Since T0, T1, and T2 are other writers of
B, we must keep them each outside the arc. T0 cannot be moved between T3
and Tf , but T1 or T2 could. Since neither could be moved after Tf , we must
constrain T1 and T2 to appear before T3. There is already an arc T2 ! T3, but
we must add to the polygraph the arc T1 ! T3. This change is the only arc we
must add to the polygraph, whose �nal set of arcs is shown in Fig. 19.2. 2

TfT T T T0 1 2 3

Figure 19.2: Complete polygraph for Example 19.2

Example 19.3 : In Example 19.2, all the arc pairs turned out to be single arcs
as a special case. Figure 19.3 is an example of a schedule of four transactions
where there is a true arc pair in the polygraph.

T1 T2 T3 T4
r2(A);

r1(A); w1(C);
r3(C);

w1(B);
r4(B);

w3(A);
r4(C);

w2(D); r2(B);
w4(A); w4(B);

Figure 19.3: Example of transactions whose polygraph requires an arc pair

Figure 19.4 shows the polygraph, with only the arcs that come from the
source-to-reader connections. As in Fig. 19.1 we label each arc by the element(s)
that require it. We must then consider the possible ways that arc pairs could
be added. As we saw in Example 19.2, there are several simpli�cations we can
make. When avoiding interference with the arc Tj ! Ti, the only transactions



19.2. VIEW SERIALIZABILITY 5

that need be considered as Tk (the transaction that cannot be in the middle)
are:

� Writers of an element that caused this arc Tj ! Ti,

� But not T0 or Tf , which can never be Tk, and

� Not Ti or Tj , the ends of the arc itself.

With these rules in mind, let us consider the arcs due to database element A,
which is written by T0, T3, and T4. We need not consider T0 at all. T3 must
not get between T4 ! Tf , so we add arc T3 ! T4; remember that the other
arc in the pair, Tf ! T3 is not an option. Likewise, T3 must not get between
T0 ! T1 or T0 ! T2, which results in the arcs T1 ! T3 and T2 ! T3.

T T T T T T
A B A, B

C

A D

C
B, C

0 1 2 3 4 f

Figure 19.4: Beginning of polygraph for Example 19.3

Now, consider the fact that T4 also must not get in the middle of an arc
due to A. It is an end of T4 ! Tf , so that arc is irrelevant. T4 must not get
between T0 ! T1 or T0 ! T2, which results in the arcs T1 ! T4 and T2 ! T4.

Next, let us consider the arcs due to B, which is written by T0, T1, and T4.
Again we need not consider T0. The only arcs due to B are T1 ! T2, T1 ! T4,
and T4 ! Tf . T1 cannot get in the middle of the �rst two, but the third requires
arc T1 ! T4.

T4 can get in the middle of T1 ! T2 only. This arc has neither end at T0
or Tf , so it really requires an arc pair: (T4 ! T1; T2 ! T4). We show this arc
pair, as well as all the other arcs added, in Fig. 19.5.

Next, consider the writers of C: T0 and T1. As before, T0 cannot present a
problem. Also, T1 is part of every arc due to C, so it cannot get in the middle.
Similarly, D is written only by T0 and T2, so we can determine that no more
arcs are necessary. The �nal polygraph is thus the one in Fig. 19.5. 2

19.2.3 Testing for View-Serializability

Since we must choose only one of each arc pair, we can �nd an equivalent serial
order for schedule S if and only if there is some selection from each arc pair
that turns S's polygraph into an acyclic graph. To see why, notice that if there



6

T T T T T T0 1 2 3 4 f

Figure 19.5: Complete polygraph for Example 19.3

is such an acyclic graph, then any topological sort of the graph gives an order in
which no writer may appear between a reader and its source, and every writer
appears before its readers. Thus, the reader-source connections in the serial
order are exactly the same as in S; the two schedules are view-equivalent, and
therefore S is view-serializable.

Conversely, if S is view-serializable, then there is a view-equivalent serial
order S0. Every arc pair (Tk ! Tj; Ti ! Tk) in S's polygraph must have
Tk either before Tj or after Ti in S0; otherwise the writing by Tk breaks the
connection from Tj to Ti, which means that S and S0 are not view-equivalent.
Likewise, every arc in the polygraph must be respected by the transaction order
of S0. We conclude that there is a choice of arcs from each arc pair that makes
the polygraph into a graph for which the serial order S0 is consistent with each
arc of the graph. Thus, this graph is acyclic.

Example 19.4 : Consider the polygraph of Fig. 19.2. It is already a graph,
and it is acyclic. The only topological order is (T2; T1; T3), which is therefore a
view-equivalent serial order for the schedule of Example 19.2.

Now consider the polygraph of Fig. 19.5. We must consider each choice from
the one arc pair. If we choose T4 ! T1, then there is a cycle. However, if we
choose T2 ! T4, the result is an acyclic graph. The sole topological order for
this graph is (T1; T2; T3; T4). This order yields a view-equivalent serial order
and shows that the original schedule is view-serializable. 2

19.2.4 Exercises for Section 19.2

Exercise 19.2.1 : Draw the polygraph and �nd all view-equivalent serial orders
for the following schedules:

* a) r1(A); r2(A); r3(A); w1(B); w2(B); w3(B);

b) r1(A); r2(A); r3(A); r4(A); w1(B); w2(B); w3(B); w4(B);



19.2. VIEW SERIALIZABILITY 7

c) r1(A); r3(D); w1(B); r2(B); w3(B); r4(B); w2(C); r5(C); w4(E); r5(E);
w5(B);

d) w1(A); r2(A); w3(A); r4(A); w5(A); r6(A);

! Exercise 19.2.2 : Below are some serial schedules. Tell how many schedules
are (i) conict-equivalent and (ii) view-equivalent to these serial schedules.

* a) r1(A); w1(B); r2(A); w2(B); r3(A); w3(B); that is, three transactions
each read A and then write B.

b) r1(A); w1(B); w1(C); r2(A); w2(B); w2(C); that is, two transactions each
read A and then write B and C.


