A Contribution to LR-attributed Grammars
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This paper concerns attribute grammars suitable for LR parsing. A class of attribute grammars called LR-at-
tributed grammars has been proposed by Jones and Madsen as a (virtually) maximum class for which attributes
can be evaluated during LR parsing. However, the original definition had some insufficient points, and no
algorithm was given for checking the LR-attributed property.

In this paper, we first propose corrections and some improvements for the definition of LR-attributed gram-
mars. Next, we present two practical algorithms for checking the LR-attributed property of a given attribute
grammar. This work became the basis of a compiler generator called Rie, which we implemented for a subclass

of LR-attributed grammars.
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1. Introduction

Attribute grammars [9][18] are an extension of con-
text-free grammars which unify syntax and semantics of
programming languages. They are becoming widely us-
ed in compilers, interpreters and in other fields [14][13]
[8].

This paper concerns a class of attribute grammars for
which attributes can be evaluated in a single pass during
LR parsing (LR(1), LALR(1) and SLR(1) parsing)
without making a syntax tree. Such grammars make up
a subset of the general attribute grammars for which
evaluation is made after making a syntax tree. But they
are becoming attractive due to their efficiency and prac-
ticality and the fact that most modern programming
languages are now designed around the easier one-pass
processing technique.

A class of attribute grammars called LR-attributed
grammars has been proposed by Jones and Madsen as a
(virtually) maximum class for which attributes (occur-
rences) can be evaluated during LR parsing [7]. (Here,
we concentrate only on ‘‘known attributes’’ of [7] i.e.
the attributes which can be evaluated during LR pars-
ing.) Readers unfamiliar with LR-attributed grammars
may refer to Appendix A for an informal introduction.
In LR-attributed grammars, a subset of inherited at-
tributes can be used as well as synthesized attributes.
However, the original definition of LR-attributed gram-
mars had some errors and weak points. It was rather
theoretical, and could not be applied directly to prac-
tical compilers. The main problems are:

(1) The definition lacked consideration of attribute
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stack configuration, yielding an erroneous result in
some cases.

(2) No algorithm for checking the LR-attributed
property was given.

(3) Evaluation of attributes was assumed to be
made in a way that all inherited attributes related to an
LR state are evaluated and stored separately, causing
space and time inefficiency.

In this paper, we show a solution to points (1) and (2).
Point (3) will be discussed in a separate paper [15].

Thus first, the definition of Jones et al. is re-formaliz-
ed to remedy insufficient points. This is done by incor-
porating an attribute stack configuration into the defini-
tion. Also, LR partial states are used instead of LR
states to enlarge the class of LR-attributed grammars.

Secondly, two practical algorithms for checking the
LR-attributed property of a grammar are developed.
While an algorithm by Purdom and Brown [12] can be
regarded as a different formalism for checking the LR-
attributed property [3], it is not so suited to practical
compiler generators since their algorithm requires a
rather complicated graph manipulation. Our
algorithms are simple and straightforward.

A practical compiler generator, called Rie, was im-
plemented according to a subclass of the LR-attributed
grammar [4] [5] [6]. The content of this paper was ob-
tained in the course of developing this compiler
generator.

2. Related works

LR-attributed grammars are related to many other
works. Probably the first study in this area was that of
Watt concerning bottom-up parsing of Affix grammars
[19]. In his method, synthesized and inherited attributes
(affixes) of the currently processed symbol are stored at
the top of a single attribute stack in a certain order. If
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there is a kind of mismatch in the order among at-
tributes of grammar symbols in the right side of a pro-
duction, his method requires modification of the given
grammar. The grammar should be modified to produce
the so-called ‘‘head grammar’’ for construction of the
parser. This is done by adding special productions (the
right side must be empty and the left side is called a
‘“‘copy-symbol’’) whose semantic actions are used for
copying the attribute values to the top of the attrib-
ute stack so that the order of attributes becomes consist-
ent. This addition of productions affects the underlying
context-free grammar, causing a problem of possibly
destroying the LR-property of the original grammar.

The above problem was not studied in [19], but it was
solved by Purdom and Brown [12] and generalized by
Pohlmann [11]). Purdom et al. investigated the posi-
tions (in the right side of a production) suitable for call-
ing semantic routines in LR(k) grammars. They
presented an algorithm to find such positions by labell-
ing positions in a graph associated with each LR (par-
tial) state. The labelling is based on graph properties
such as circularity of paths and predominators.
Although their work is presented in a formalism
different from Jones et al., their results can be regarded
as another definition of LR-attributed grammars [3].

There is also a study by Tarhio for evaluating some in-
herited attributes during LR parsing [17]. In his
method, the so-called ‘‘uncle’’ symbol must be searched
for at evaluation time, but the method is rather com-
plicated. Besides, a grammar transformation called ‘‘un-
cle transformation’’ is usually needed beforehand. The
possibility or impossibility of this transformation is
also related to the work by Purdom et al.

After all, we can conceive of several definitions of
LR-attributed grammars according to the formalism of
each work, which may not be exactly the same. (For a
comparative study, see [17][7].) Among them, we think
the definition by Jones et al. is the most natural and
potentially the most useful formalism: no grammar
transformation is needed in their definition as opposed
to other works; the class of attribute grammars by their
definition is virtually the largest class under the condi-
tion that parser construction need not be modified [17].
Thus, to make a practical compiler generator, we have
started with their work and made improvements and
developed practical algorithms for checking the LR-at-
tributed property.

3. Attribute Evaluation during LR-Parsing

In this section, we show an analyzer for LR-at-
tributed grammars, which evaluates attributes during
LR-parsing. The presentation roughly follows that of
Jones et al. [7], but it is a refinement in that LR partial
states are used instead of LR states for attribute evalua-
tion. Before that, basic notations and definitions are
presented. For other definitions concerning attribute
grammars, see, for example, [9] [18] and for LR pars-
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Superscripts distinguish occurrences of grammar symbols in pro-
ductions.

Fig. 1 Attribute grammar G1 (partial grammar).

ing, see [1].

In the following, the presentation is done using an ex-
ample attribute grammar G1 as shown in Fig. 1. (The
syntax is taken from [12].) Superscripts may be added
to grammar symbols to distinguish their occurrences in
productions or LR items. For example in Fig. 1, E'*
means E at the 3rd position of the 1st production. We
consider in principle that all grammar symbols in pro-
ductions have superscripts. But these superscripts are
meaningful only if definitions requiring them are used,
otherwise, the superscripts should be neglected.

We use the following convention: upper-case names
such as 4, B, C, ..., Z, Z’' and ASST are nonter-
minals; Lower-case names such as a, b, ¢ and name,
and operator symbols such as :=, + and ** are ter-
minals; X, Y, . . . are grammar symbols (either nonter-
minals or terminals); «, 8, p, . . . are strings of gram-
mar symbols.

Semantic rules are enclosed in { and }. An attribute a
of symbol X is represented by X.a. The set of inherited
and synthesized attributes of symbol X are represented
by AI(X) and AS(X), respectively.

We will often use the term grammar to denote both
the entire attribute grammar and the underlying con-
text-free grammar.

Def 3.1 For the production Xp,— X, . . . X, (Where X
is a nonterminal), A/(X,) and AS(X)) (j=1, . . ., n) are
called input attribute occurrences.

As in much of the literature, we assume the follow-
ing.
Assumption 3.1 Only input attribute occurrences ap-

pear in the right side of a semantic rule of a given gram-
mar (often called Bochmann normal form).

Since we want to evaluate attributes during left-to-
right parsing, our method is closely related to the L-at-
tributed property of attribute grammars. L-attributed
grammars are defined as follows under Assumption 3.1
(a modification of [18]).

Def. 3.2 An attribute grammar is L-attributed iff for
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any production X;—X, .
tions hold:

(1) The attribute occurrences in AI(X;) (1<k=<n)
depend only on the values of attribute occurrences in
AIXe) U ULAS(X).

(2) The attribute occurrences in AS(Xo) depend on-
ly on the values of attribute occurrences in AI(X,) U

=1 AS(X)).

. . X, the following condi-

Ex 3.1 Grammar Gl is L-attributed since each produc-
tion satisfies conditions (1) and (2) of Def 3.2.

Assumption 3.2 In the following, we assume that at-
tribute grammars are L-attributed.

For a given grammar, LR states can be constructed as
usual [1]. We assume that the start symbol of the gram-
mar is Z and the grammar is augmented by the produc-
tion “Z'—=2”.

Def 3.3 An LR(1) item (LR item or item for short) of
a grammar G is [A—a-fB, a] where “A—af’’ is a pro-
duction of G, and a is a terminal symbol. Its first compo-
nent [A—«-f] is called a core.

Def 3.4 A closure of a set of LR items, I, is a set of
items defined by the following CLOSURE(]).

1. Every item in / is in CLOSURE(]).

2. If[A-«a-BB,a)lisin CLOSURE(I), “B—y’isa
production, and b is in FIRST(Ba), then add the
item [B— -y, b] to I, if it is not already there.

Here, it is said that [A—«- BB, a] directly derives
[B— -y, b). The derives relation is the non-reflexive tran-
sitive closure of the directly derives relation.

Def 3.5 The set of items GOTO(I, X) for a set of
items 7 and a grammar symbol X is defined to be the
closure of the set of all items [A—aX" 8, a] such that
[A—a-Xp, a] is in I. Here, the set of all items [4—
aX: B, a] is called the kernel of GOTO(I, X).

For simplicity, we often show only the core of LR
items in the discussion below.

Using CLOSURE and GOTO operations, the collec-
tion of sets of LR items, {/, I}, . . . , I}, is constructed
starting from the initial set of LR items, [,=CLOSURE
({12’ ~-Z, $1}) [1]. The set of LR items I; thus con-
structed is called an LR state S; from the viewpoint of
an LR automaton. (We often identify S; with I..)

The LR parsing table is constructed as follows.
1. a) If [A—«a-ap, b] is in S; and GOTO(S;, a)=S,,
then set ACTION(S;, a] to “‘shift S;”’.
b) If [A—«-, a] is in S;, then set ACTION [S;, 4]
to ‘‘reduce by A—a’’.
¢) If[Z'—=Z-, $]isin S;, then set ACTION [S;, $]
to ‘‘accept’’.
2. If GOTO(S,;, A)=S,, then GOTO [S;, A]1=S,.
3. Ali entries not defined by the above rules are set to
‘““error’’.
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(a) is an LR state (S)
(b) is an LR partial state (PS)
(state=S, lookahead =name)

Fig. 2 An LR state and an LR partial state of GI.

As in [12], we subdivide an LR state into (LR-) par-
tial states according to lookahead terminal symbols.

Def 3.6 [12] The lookahead set for item [A—a-f, a]
is the set of k symbol (here, we let k=1) prefixes of the
strings of terminal symbols that can be derived from fSa.
The partial state of S with lookahead b is the set of
items in state S that have b in their lookahead set.

Ex 3.2 The partial state PS of S (Fig. 2(a)) with
lookahead ‘name’ is shown in Fig. 2(b).

In practice, considering LR states instead of partial
states will suffice in most cases, but here partial states
are used for theoretically widening the class of LR-at-
tributed grammars.

For a partial state PS, we define IN(PS) and IN'(PS)
as follows. They are the sets of inherited attributes
which should be evaluated at partial state PS.

Def 3.7 Given a partial state PS,

IN(PS)={B.b|B.b is an inherited attribute of a
nonterminal B such that [A—«a-Bg, 4] is
an LR item of PS. («, # may be empty.)}

IN'(PS)={B'.b|B".b is an inherited attribute of a

nonterminal B’ such that {A—«-B'f, a] is
an LR item of PS, where superscript ¢ is
for discriminating occurrences of gram-
mar symbols in LR items. }
(Here, we consider two versions of productions: in the
definition of IN'(PS), superscripts of grammar symbols
are taken into account, while in the definition of
IN(PS) they are neglected.)

Ex 3.3 IN(PS) and IN'(PS) for the partial state PS of
Fig. 2(b) are {E.env, T.env, P.env} and {E'“.env,
E>'.env, T*'.env, P*'.env, P>'env}, respectively.

The organization of stacks for syntax and semantic
analysis of LR-attributed grammars is sketched in Fig.
3. The parsing is made by the usual LR parsing method
[1]. In addition to the usual parsing stack ‘ps’ for LR
parsing which contains LR states, two attribute stacks
which behave synchronously with the parsing stack are
used. The stack ‘ias’ is for storing inherited attributes
and the stack ‘sas’ is for synthesized attributes.

More formally, let an attributed parse configuration
(abbreviated as configuration) of the analyzer be

(Soﬁoxl)?l e S,,,ﬁllTS,,,7|XmimSm, a... a,,$)




A Contribution to LR-attributed Grammars
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S; is an LR state, PS, is a record containing values of inherited
attributes in IN(PS)), X, is a record containing values of synthe-
sized attributes of X,.

Fig. 3 Organization of stacks for analysis of LR-attributed gram-
mars.

Here,

—S8{(i=0, ...) is an LR state (on the parsing stack
‘ps’) (So is the initial state {[Z'—-Z, $]}, where
“Z'—2Z” is the first production in the augmented gram-
mar).

— PS; is a record containing values of all inherited at-
tributes in IN(PS)) (on the stack ‘ias’) where PS;is a par-
tial state of S; with appropriate lookahead. In par-
ticular, if g, is the next input symbol and the current LR
state is S,, which is (we only show the core of LR items
and omit [and])

S,,,:{Xo_’. .. Xmngm'Xm*l e

e, X raa, L .

,Xm-l_". ey

then, PS,. (CS») is a partial state of S,, with lookahead
a;
PS,n:{Xo—' PN X,,,_IX,,,-X,,,H .
ey Xgoraol.

. ,Xm+1_". “ ey

Note that by the nature of LR parsing, PS,— i CSn- is

PS, 1 ={Xo=. . . Xn-1"XonXmi1 .o, Xm™o . .,
vy Xg—oeapB)
and PS,—2CSn—2 is
PS,_»={Xo=. . X1 XXt + o s Xm0 o 0y
ey Xe—rapyh.

— X is a grammar symbol. Note that in practice, gram-
mar symbols X;’s need not be stored as shown in Fig. 3.
— X, is a record containing values of all synthesized at-
tributes in AS(X;) (on the stack ‘sas’).

—a; . . . a, is the remaining input.

Since IN(PS;) may differ from partial state to partial
state, the type of an element of the stack ‘ias’ is the
union of records, each record containing attribute
values of IN(PS)). Similarly, the type of an element of
the stack ‘sas’ is the union of records, each record con-
taining attribute values of AS(X)).

Here, we define the offset of an attribute occurrence
as its position from the top in the attribute stack
organization of Fig. 3, as follows.

Def 3.8 If the configuration of the analysis is
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(SoPSo XX, . . . Su-1PSu— 1 XmXmSm, a...a3)

then, the offset of an attribute occurrence a is 0 (<0) if
a is a synthesized attribute occurrence contained in
Xon+o, Or ais an inherited attribute occurrence contained
in PSy-o.

According to the nature of LR parsing discussed
above, this means that if the current state is S,, such that

Xo=Xn—x - oo X Xmsy . . . €Sy

then, the offset of an attribute occurrence aeAI(Xy) is
—(k+1), and the offset of an attribute occurrence
beAS(Xn-)) O<is<k)is —i.

An attribute evaluator for LR-attributed grammars
which evaluates attributes during LR parsing is shown
below. Synthesized attributes of a nonterminal A are
evaluated when the parser reduces o by the production
“A—¢a’’. Inherited attributes of a nonterminal B are
evaluated when the parser goes to an LR state which
contains an LR item {4 — 8- By]. Thus, attribute evalua-
tion occurs not only at reduction time but also at state
transition time, where grammar symbols of the right
side of a production are processed. This is in contrast to
conventional bottom-up syntax-directed translation
where semantic analysis is made only at reduction time.

The following attribute evaluator is a refinement of
[7] in that LR partial states are used instead of LR states
for the evaluation of inherited attributes.

procedure EVAL {attribute evaluator during
LR parsing}
begin
configuration: =(S,, a; . .
loop
let configuration be
(SQP—S()XV‘—;/ e Sm-lﬁg,,thmimSm, a. .. a,.$);
action: =ACTIONI[S,, a;] {ACTION in the parse
table};
if action="*‘accept”’ or action="‘‘error’’ then exit;
PS,.:=PARTIAL-STATE[S., a)]
{partial state of S,, with lookahead a;};
compute values of inherited attributes in IN(PS,,)
{see section 4/;
PS,.:=record containing the computed values;

. an$);

configuration:=(. . . SuPS, a; . . . a.3);
{Fig. 3 shows the organization of stacks at this
point}

case action of
““shift $>’:
a;: =record containing values of synthesiz-
ed attributes of a; {from lexical
analysis}; .
configuration: =(. . . S,PS.a;a;S,
Ajsy o . a,%);
““reduce by A—a’’:
compute values of synthesized attributes
of A;
A:=record containing the computed
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values;

k:=|al;

pop configuration down to

(. . Sm_kﬁmvk, a. .. a,.$);

S:=GOTO[Sn—« A] {GOTO in the parse
table};

configuration: =(. . . Sn_PSn-«AAS,

a...asl)
end case
end loop
end

Note 3.1 This attribute evaluator can deal with &-
rules.

Note 3.2 In this attribute evaluator, the computation
of PS,, (values of inherited attributes in IN(PS,)) is
useless if ACTION[S,, a]="‘‘reduce by A—a’ with
a#¢, since in this case PS,, will soon be popped up. It is
easy to insert a test to bypass the computation of PS,, in
this case [7].

4. Reformulation of LR-attributed Grammars

LR-attributed grammars are reformulated as follows,
with several improvements on [7]: a major improve-
ment is that the organization of attribute stacks is con-
sidered in the definition; another refinement is that LR
partial states are used instead of LR states for attribute
evaluation to enlarge the class of LR-attributed gram-
mars.

In the attribute evaluator EVAL of the previous sec-
tion, PS,,, the values of inherited attributes in IN(PS,,),
must be computed. In LR-attributed grammars, this
can be done by observing that the value of an attribute
in IN(PS,,) ultimately comes from the values of at-
tributes in the kernel of PS,,. Thus, we can regard the
value of each inherited attribute 4.4 in IN(PS,,) as a
function of the input attribute occurrences of the LR
items (or LR item) in the kernel of PS,,. The function is
called a semantic expression and is represented by
Eps(A.a) for the attribute A4.a.

For example, in the partial state PS (Fig. 2(b)) of
grammar G1, the value of E.env which is in IN(PS) can
be computed as follows. Since E.env appears in two
places, i.e., E'’.env and E*'.env, these two attribute
values must be taken into consideration. First, the value
of E'.env is defined to be equal to ASST.env according
to the second semantic rule of grammar G1 (Fig. 1).
(Here, ASST.env is an input attribute of the (only one)
item in the kernel, which is { ASST-V:= - E}.) To get
the value of ASST.env from the attribute stacks, we
also have to know the position of ASST.env (here the
attribute stack is ‘ias’ since ASST.env is an inherited
attribute). Since ‘ps[top-1]’ corresponds to the LR
state { ASST—V - :=E} and ‘ps[top-2]’ corresponds to
the LR state {...—...-ASST..., ASST- -
V:=E, ...}, we know that ASST.env is at ‘top-2’ of
the attribute stack, i.e., the offset of ASST.envis ‘—2’.
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We denote this by {(ASST.env, —2)}. Second, the
value of E>'.env is defined to be equal to E*®.env. As
the LR item [E*°— - E*'+T??] is derived from itself or
from [ASST—V:= - E'], the value of E**.env comes
from E'3.env. Its value is equal to ASST.env and the
offset of ASST.env is ‘—2’ from the first observation.
Putting the two cases together by taking the set union of
these cases, we can see that

Eps(E.CnV)
= {expression of E!3.env} U {expression of E*'.env}
={(ASST.env, —2)}.

By making the above inspection more precise, we get
the following definitions.

Def 4.1 Input attributes of a partial state PS are either
(1) inherited attributes of A such that [A—«a-B, a] is
in the kernel of PS, or

(2) synthesized attributes of grammar symbols appear-
ing in « such that [A—«-B, 4] is in the kernel of PS.

For each inherited attribute A.a in IN(PS), the
semantic expression Eps(A.a) is a set of expressions in
terms of the input attributes of PS as follows.

Def 4.2 For a partial state PS of a grammar, and for
an A.qeIN(PS), Eps(A.a) is defined as a set of expres-
sions as folows.
Eps(A.0)= U
Al aeIN'(PS)
where A’.qeIN'(PS) is the same attribute as

A.aeIN'(PS) but with A being superscripted to

distinguish occurrences of A in LR items in PS. The do-

main of Fpgis IN'(PS). Fps(A'.a) will be represented in
terms of the input attributes of PS. Fpes(A'.q@) is the
smallest solution [1] of the following equations.

(1) If A’ occurs in an LR item in the kernel of PS:
(let (the core of) the LR item be [B—a-A'S])
Fps(A'.q)

= {f((Bbh OB.b,), (B.bz, OE.bz), ey

(Xi.x1, Ox,Ax,), (X2.x2, 0x,.x)5 - - Dl
“A.a=f(B.b\, B.b,, . . ., Xi.x1, X2.X2, . . .)”" is the
semantic rule for defining A'.a, where B.b€AI(B)
and X;.x,eAS(X)) for a symbol X| in a.
0p.», OT Ox,x is the offset of B.b; or X;.x;,
fori=1,2,...,j=1,2,...}

(Notes. Since B.b’seAI(B), os,’s become the same

value. We have naturally extended the domain of ‘f’

from attribute values to attribute values and their posi-

tions in an attribute stack.)

(2) If A" occurs in an LR item not in the kernel of PS:
(let (the core of) the LR item be [B—-A'S] (#))

Fps(A'.0)

={f(e, e, . . )|
“A.a=f(B.b,, B.b,, . . .)”’ is the semantic rulefor

Fps(A’.a)
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defining A'.a. (Each B.b; ought to be an inherited at-
tribute of the left side symbol B of the LR item (#).)
Let [C—y-B"d] be an LR item that directly derives
the above LR item (#) (B'. bicIN'(PS)).

ecFps(B".b), for i=1,2, ...}

Ex 4.1 For the partial state PS of Fig. 2(b),
Eps(E.env)=Fps(E'*.env) U Fps(E>' .env)
={(ASST.env, —2)}
since
Fps(E'>.env)

= {(ASST.env, Oassren)| ‘E.env=ASST.env’’ is the
semantic rule for defining E'*.env}

={(ASST.env, —2)} by Def 4.2 (1),
and

Fps(E>'.env)

={e|“E*.env=E*"env”’ is the semantic rule for
defining E*'.env. The LR items [ASST—V:=-E"}]
and [E**—-E2'+ T2’ directly derive the LR item
[EZ'O—'-EZ"+TZ‘3].

Thus, e, is in Fes(E".env) or in Fps(E*'.env)}
by Def 4.2 (2).

=Fps(E'.env) U Fps(E>'.env)

=Fps(E.env) (smallest solution)

={(ASST.env, —2)} by Def 4.2 (1).

Similarly,

Eps(T.env)=Fps(T*'.env)=Fps(E'>.env) U Fps(E*'.env)
=...={(ASST.env, —2)},

Eps(P.env)=Fps(P*'.env) UFps(P*>'.env) =Fps(T*'.env)
=...={(ASST.env, —2)}.

As seen from Ex 4.1, Fps(A‘.a) can be computed by
traversing in reverse the derivation of LR items in a par-
tial state.

Note 4.1 Assumption 3.1 is necessary for the defini-
tion of Eps(A4.a) and Fps(A4'.a) by Def 4.2, for otherwise
Eps(A.a) and Fps(A'.a) may not be represented in terms
of input attributes of the partial state.

The following example yields Eps containing more
than one expression. This example will be used again
later for comparison with the original definition by
Jones et al.

Ex 4.2 For an attribute grammar G2 which is
A5 X AlLBIS

{B".b=A".al (1)
AZ,O__,AZ.IBZ.Z
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{B*2.b=A.a} (2)

there is an LR partial state
PS:{Al'O"’XAl'Z . Bl,l’ A2.0_¢A2,l . BZ.Z L.
Eps(B.b) is
Eps(B.b)=Fps(B'*.b) U Fps(B*2.b)
= {(A~a; _2)} U {(A'a’ - 1)}
= {(A'a) _2)! (A'aa - 1)}

Def 4.3 A grammar G is LR-attributed iff

(1) G is L-attributed, and

(2) For each LR partial state PS of G, and for each
inherited attribute A.aeIN(PS), Eps(A.a) contains only
one expression.

NG

Note 4.2 Clearly the class of LR-attributed grammars
is larger than that of S-attributed grammars[10]. As for
its relation with L-attributed grammars, see section 6.

Note4.3 Inchecking that ‘‘Eps(A.a) contains only one
expression’’, the definition of equality becomes a pro-
blem. We may rely on mathematical equality. For exam-
ple, in a grammar

S—aAp {A.a=S.s}

A—By {(B.b=A.a+1}

B-C*§ {C¥.c=B.b—1}

A—=C*'n {C*'.c=A.a!}
and in a partial state

PS={S—a-AB, A~ By, B—-C*§, A—-C*p, .. .},

Fps(C*.c)=. . .={((S.s, —k)+1)—1} may be regard-
ed as equal to Fps(C*'.c)=...=1{(S.s, —k)!, where
k=|a]. However, in most cases checking by

mathematical equality is not necessary in practice.

Ex 4.3 Grammar G1 (Fig. 1) is LR-attributed since
(1) Gl is L-attributed, and
(2) For the partial state PS of Fig. 2(b), Eps(E.env)
contains only one expression {(ASST.env, —2)} (cf. Ex
4.1). Similar reasoning holds for Eps(T.env), Eps(P.env)
and any other partial states.

Ex 4.4 Grammar G2 (Ex 4.2) is not LR-attributed
since Eps(B.b) contains two expressions in a partial state
*).

In LR-attributed grammars, the form of each in-
herited attribute becomes unique in each partial state.
Due to this uniqueness, each inherited attribute can be
evaluated consistently and stored in a field of the ‘ias’
stack during LR parsing. (As for synthesized attributes,
the uniqueness is clear.) Actually, if Eps (A.4q) is

{A(B.b1, —ko), (B.bs, —ko), . . .,

(X1.x1, ‘k1), (Xz.Xz, _kz), .. )}
where B.b/’s are inherited attributes and X,.x;’s are syn-
thesized attributes (the offsets of B.b’s become the
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same by Def 4.2(1)), then the value of A.a in PS,, can be
computed by the assignment

ias[top].A.a-field: = f(ias[top — ko]. B. bi-field,
ias[top—ko).B. b field, . . .,
sas[top—ki]. X|.x,-field,
sas[top — k3). X>.xp-field, . . .)

Ex 4.5 For G1, assume that we started the analysis
from the configuration

So,...a=b+c;...9)
and reached the configuration
So. .. XnXnSwPSm, b+c; ... 9).
A snapshot of this configuration in the analysis (cf. Fig.
3) is,
Sm—2(=psftop—2])={...—>... X - ASST ...,
ASST— - V:=E, . . .}
PS,,, is a subset of S,,-, with lookahead ‘name’

PSp-» (=ias[top—2])=record value of ASST.env,
etc. end

X2 (=sas[top—2])=record containing AS(X)
Sm_1 (=ps[top—1])={ASST—V - :=E}
PS,,_, is the same as S,,—, with lookahead *:="’
PS,,(=ias[top— 1])=record containing AI(:=)
=¢
X,._(=sas[top—1])=record containing AS(V)
Sn(=ps|top]) =Fig. 2(a)
={ASST—V:=-E, E~-E+T,
E—-T, T>-P++T, T—-P,
P— -name, P— -(E)!
PS,, is a subset of S,, with lookahead ‘name’
=vFig. 2(b)

={ASST—-V:=-E, E—~-E+T,
E— T, T—-P*+«T, T—-P,
P— -name|

ES',,, (=ias[top])=record value of E.env, value of
T.env, and value of P.env end

X.. (=sas[top])=record containing AS¢:=)=¢

At the partial state PS,, of Fig. 2(b), E.env, T. env and
P.env have the following Eps, .

Eps (E.env)=Eps (T.env)=Eps (P.env)
={(ASST.env, —2)}

This means that these attribute values can be copied
from the ‘ASST.env’ field of ias[top—2]. That is,

ias[top].E.env-field: =ias[top —2].ASST.env-field;
ias[top].T.env-field: =ias[top —2].ASST.env-field;
ias[top].P.env-field: =ias|top—2].ASST.env-field

M. Sassa, H. IsHiZukA and 1. NAKATA

Notes 4.4

1. In cases where the semantic rule is a copy rule such
as ““C.c=B.b”’, much optimization can be made at at-
tribute evaluation time. For example, let a partial state
PS of a grammar G3 be

S—A-B {B.b={(S.s)}
B—-C {C.c=B.b}

Eps’s become
Eps(B.b)={f((S.s, — 1))}
Eps(C.c)= {f((S.s, —1))!
by the definition. This usually means the assignments
ias[top].B.b-field: =f(ias[top — 1].S.s-field); @)
ias[top].C.c-field: =f(ias[top— 1].S.s-field)

occur at attribute evaluation time. However, optimiza-
tion into

ias[top].B.b-field: =f(ias[top — 1].S.s-field);
ias[top].C.c-field: =ias[top].B.b-field

is easy and more favorable.

2. We assume from the nature of attribute grammars
that semantic rules are purely functional, i.e., there are
no side effects. But, in cases where there are side effects,
some unpredictable problems arise. For example, the
assignments (*) for the grammar G3 of the above note 1
show that the function f may be called twice for
evaluating B.b and C.c. If f has a side effect, this at-
tribute evaluation may cause multiple side effects even
when we want to cause the side effect only once.

3. InEx4.5, Eps (E.env), Eps (T.env) and Eps (P.env)
have the same value {(ASST.env, —2)}. Optimization
by collecting such attributes into an equivalence class
will be dealt with in a separate paper [15].

Here, we compare our definition with Jones et al.’s
definition [7].

Firstly, the offset in Def 4.2(1) was lacking in the
definition of [7], but we have included it since it is
necessary in cases such as Ex 4.2: In Ex 4.2, although
the semantic rules (1) and (2) are the same, Eps(B.b)
shows that there are two possible forms of semantic ex-
pressions for B.b since A'®.a of (1) and A?°.a of (2) are
in different positions (at ‘top—2’ and ‘top—1’, respec-
tively) in the attribute stack at the partial state PS (*).
Thus, the value of B.b cannot be computed uniquely at
this partial state, violating the LR-attributed property.
In the original definition of {7], Eps(B.b) was defined in
a way that it contains only one expression, Eps(B.b)
={A.a}, thus the grammar is incorrectly regarded to be
LR-attributed. Ishibashi [3] also remedied this defect by
using a homomorphism, but he did not give any con-
crete form for the homomorphism.

Secondly, we have made the Def 4.2 more precise
than Jones et al.’s. We distinguished Eps(A.4) and




A Contribution to LR-attributed Grammars

Fps(A'.a). We clarified computation by ‘‘smallest solu-
tion’’ and consideration of LR item derivation, while
their definition was rather vague on these subjects.

Thirdly, Def 4.2 and Def 4.3 are extensions of their
definition in that LR partial states are used instead of
LR states for attribute evaluation as suggested in their
note [7]. By this extension, LR-attributed grammars ac-
tually become the maximum class of attribute gram-
mars for which attributes can be evaluated during LR
parsing (cf. [17]). For example, the following attribute
grammar is LR-attributed if the definition based on LR
partial states is used, but it is not LR-attributed if the
definition based on LR states is used.

Ex 4.6 Let the grammar G4 be

S—AbB

{A.ai=1; B.bi=f(. .., Aas,...)...!
S—AcB

{A.ai=2; B.bi=f(. .., A.as, ...)...}
A—e

{A.as=A.ai}

where A.aieAI(A) and A.aseAS(A).

If we used LR states in the definition of semantic ex-
pressions, Es (A.ai) contains more than one expression
for the LR state S;={S—-AbB, S—-AcB, A—>-{, as

Es(A.ai)=11, 2|

Thus, G4 would not be LR-attributed.

If we use LR partial states in the definition, Eps(A.ai)
contains only one expression for the partial state
PS,={S—:AbB, A— -} (lookahead=b), which is

Eps,(A.ai)= (1}

and for the partial state PS,={S—-AcB, A—-]
(lookahead =c¢), which is

Eps,(A.ai)={2}
Thus, G4 is now LR-attributed.

An interesting property which has been recently
demonstrated is that any L-attributed LL(1) grammar
can always be expressed by an LR-attributed LR(1)
grammar [20]. Use of partial states instead of LR states
plays an essential role in its proof.

5. Algorithms for Checking the LR-attributed Proper-
ty and Providing the Semantic Expressions

We give two algorithms for checking whether a given
attribute grammar is LR-attributed or not and to pro-
vide the semantic expressions Eps(A4.a)’s. The first is bas-
ed on the recursive definition of Eps(A.a). The second is
non-recursive and works simultaneously with the com-
putation of the closure of LR items.

The first algorithm borrows the concept of PSPG
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(partial state position graph) from [12]. A PSPG is a
directed graph representing a partial state. A node in a
PSPG is an item node corresponding to an LR item of
the partial state or a special node. A special node is
either “I’’, ¢“SHIFT”, or “REDUCE i”’, which
represents an initial node, a shift operation (in parsing),
or a reduce operation (in parsing), respectively. There is
an edge from an item node to another item node if the
former item ‘‘directly derives’’ the latter item in the par-
tial state. There is an edge from “‘I’’ to each node cor-
responding to an item in the kernel. There is an edge
from an item node to ‘‘SHIFT”’ if the item is of the
form [A—«-afl, b] where a is a terminal symbol. There
is an edge from an item node to “REDUCE ;”’ if the
item corresponds to production i/ and is of the form
[A—a-, b].

Ex 5.1 The PSPG for the partial state of Fig. 2(b) is
shown in Fig. 4.

An algorithm is given by Purdom et al. to investigate
positions suitable for calling semantic routines in LR(k)
parsers. It can be regarded as a different method for
checking the LR-attributed property [3]. It uses a labell-
ing of nodes of PSPG. But their method is not well
suited to a practical compiler generator, since it requires
rather complicated graph manipulations such as detec-
tion of predominators of the final node and checking
whether a node ‘‘derives itself’’. Our first algorithm is
based on the same PSPG, but is simpler and straightfor-
ward. It checks the LR-attributed property by recursive-
ly traversing nodes in the PSPG, like a list marking
algorithm.

Algorithm 1 (check the LR-attributed property and
provide the semantic expressions using
PSPG)

Input Attribute grammar G

Output: Determination of whether the given G is LR-
attributed or not, and semantic expressions
Eps(A.a)’s for each partial state PS and for
each A.aeIN(PS).

{main }

{eps[ ] is an array and its domain is IN(PS). eps[A.a]
(A.aeIN(PS)) represents semantic expression Epg(A.a)
which contains only one expression for LR-attributed
grammars. |
for each LR state S of G do
for each partial state PS of S do
begin
make the PSPG;
for each inherited attribute A.aeIN(PS)
do eps[A.a]: =empty;
for each LR item k in the kernel of PS do trav(k);
write out eps[4.q]’s as semantic expressions
Ers(A.a)’s.
end;
procedure trav(i:LR item or special node of PSPG);
begin
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Fig. 4 PSPG of LR partial state of Fig. 2(b).

if (=“REDUCE ;”’) or (i=‘‘SHIFT”’) then return;
if marked(/) then return;
let i be of the form [B—«-Ap]{only the core[l] is
shown here};
{if i=[B—a-], skip the following for-loop!
for each inherited attribute A.a of A do
begin
let “A.a=f(X..x., Xz.Xz,
tic rule defining A.a;
if i is in the kernel then
e:=f((X1.x1, 0x,x), (X2.X2, Ox,x)s . . .)
else e:=f(eps[X\.x1], eps[X2.x2], . . .);
if eps[A.a] =empty then eps[A.a]:=e
else if e #eps{A.a] then
‘“‘LR-attributed property is violated”’

. . .)"”" be the seman-

end;
mark (7);
for each LR item ni derived from / do trav (ni)
end;

Characteristic features of this algorithm are that the
check for the LR-attributed property and the computa-
tion of Eps(A.a) (i.e. eps [A.a]) are made incrementally
by stepwise traversing of the ‘‘direct derivation”’ rela-
tion in the closure, starting from the items in the kernel.
No repeated traversing of edges of the PSPG is
necessary. The time complexity of this algorithm for a
partial state PS is linear to the number of inherited at-
tributes in IN' (PS), or roughly linear to the number of
nodes of its PSPG.

Notes 5.1

1. In this algorithm, ‘eps[4.aq]’ which represents
Eps(A.a) corresponds to the smallest solution of
Fps(A‘.a)’S.

2. As for checking the equality of ‘e’ and ‘eps[A.a]’,
see Note 4.3.

Ex 5.2 For the partial state PS of Fig. 2(b), PSPG is
already shown in Fig. 4. The algorithm traverses the
PSPG, for example, in the order (1), (2), ..., (7)
shown in Fig. 4. At node (1), ‘e’ becomes (ASST.env,
OassT.env) —(ASST.env, —2) and since eps[E.env] is emp-
ty, eps[E.env] becomes (ASST.env, —2). Thus,
(ASST.env, —2) is obtained as the semantic expression
Eps(E.env). At node (2), ‘e’ becomes eps[E.env] which
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Table 1 Results in a description of a Pascal subset.

no. of input lines 2302
(excluding type definitions and subordinate routines)

no. of productions 165
no. of nonterminal symbols 64
no. of terminal symbols 66
no. of synthesized attributes 128
no. of inherited attributes 145

(maximum no. of fields in the stack for inherited attributes in
LR-attributed grammars)

is (ASST.env, —2). Since ‘e’ is equal to eps[E.env], the
LR-attributed property is not violated for E.env. It pro-
ceeds similarly for node (3) and so on.

Usually, the use of LR states instead of partial states
will suffice for attribute evaluation. The second
algorithm uses LR states and works simultaneously
with the computation of the closure of LR items. This
algorithm is non-recursive and does not require the
PSPG. A modification of this algorithm was adopted in
our compiler generator Rie [4][5](6].

Algorithm 2 (check the LR-attributed property and pro-
vide the semantic expressions simul-
taneously with computation of closure)

Input, Output: same as Algorithm 1 except that

Es(A.a)’s are output for each LR
state S instead of each partial state.
(Es(A.a) is the union of Epg(A4.a) for
all partial states PSCS.)

{main}

{es[ ]is an array and its domain is IN(S), where IN(S)

is the union of IN(PS) for PSCS. es[A.a] (A.acIN(S))

represents semantic expression Eg(A4.a) which contains
only one expression for LR-attributed grammars. |

for each LR state S of G do

begin
{we assume that the kernel of S is given; the non-
kernel of S is derived in this algorithm |

closure: =empty;
for each inherited attribute A4.2€IN(S) do

es[A.a]: =empty;
for each LR item k in the kernel of S do

begin check(k); closure: =closure U {k} end;
repeat

select LR item / from closure;

let / be of the form [C—«- Bf] {only the core[1]

is shown here};

{if i=[C— -], skip the following for-loop |

for each production p with B as left side do

begin
let p be of the form “B—y’’;
if [B— - yléclosure then
begin
check([B~ - y]);
closure:=closure U {[B—-y]}
end
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Fig. A1 The concept of LR-attributed grammars.

end
until all LR items in closure checked;
write out es[A.a]’s as semantic expressions
Es(A.a)’s at S
end;
procedure check(i: LR item);
begin
let i be [B—~«-AP];
{if i=[B—a-], skip the following for-loop}
for each inherited attribute A.a of A do
begin
let ““A4.a=f(X\.x), X2.X2, . . .)”’ be the semantic
rule defining A.a;
if / is in the kernel then
e:=f((X\.x1, 0x,x), (X2.x2, Ox,x), . ..)
else e:=f(es[X.x1], es[X2.x2], . . .);
if es[4.a] =empty then es[A4.a]:=e
else if e #es[A4.a] then
“‘LR-attributed property is violated”’
end
end;

6. Some Experience

The statistical data in Table 1 was obtained by
describing a compiler front-end for a subset of Pascal
[2] using our compiler generator. This front-end uses
145 inherited attributes, all of which satisfy the LR-
attributed property.

As regards comparison of LR-attributed grammars
with other attribute grammar classes, we have no
definite results yet. But, writing descriptions of a subset
of Pascal and other small languages using LR-
attributed grammars was as easy as writing these using
L-attributed grammars. Considering that we want to
evaluate attributes during left-to-right parsing, the L-

- attributed property (Def 4.3 (1)) must be inherently
satisfied. This property usually holds in most modern
programming languages which are designed around the

205

easier one-pass processing technique. The newly impos-
ed restriction (2) of Def 4.3 was not severe, since in
many programming languages, inherited attributes such
as environment are either simply copied or modified on-
ly in block entry to form a nested scope, but both can
be easily described so as to satisfy this restriction (2) [2]
[16][6]).

7. Concluding Remarks

In this paper, we first have provided corrections and
improvements for the definition of LR-attributed gram-
mars by Jones and Madsen.

Next, we have presented two practical algorithms for
checking the LR-attributed property and providing the
semantic expressions of a given attribute grammar. A
compiler generator calied Rie has been written based on
a subclass of LR-attributed grammars, by collecting in-
herited attributes into equivalence classes. This will be
discussed in another paper [15].

An interesting property which has been recently
demonstrated is that any L-attributed LL (1) grammar
can always be expressed by an LR-attributed LR (1)
grammar [20].

As for future problems, it is necessary to examine to
what extent the class of LR-attributed grammars can be
practically applied, or how strict the restriction of LR-
attributed grammars is to compiler writers. The LR~
attributed grammar class must also be compared with
other classes of attribute grammars and other techni-
ques such as using global attributes to represent some
kinds of inherited attributes, e.g. environment.
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Appendix A (The concept of LR-attributed grammars)

Historically, in order that attribute evaluation could
be made during bottom-up parsing, a class of attribute
grammars called S-aftributed grammars was first pro-
posed [10). This class only allows synthesized attributes
and excludes any inherited attributes, because it was
considered impossible to use inherited attributes since
the parsing tree above the analyzed part is not determin-
ed. In S-attributed grammars, attributes are evaluated
at reduction time where the production to be reduced is
determined uniquely.

In 1980 however, Jones and Madsen [7]} showed that
inherited attributes satisfying certain conditions can
also be evaluated during LR parsing, by investigating
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the behavior of attributes in LR states. Such inherited
attributes are evaluated at the state transition time
where the next state is pushed on the parsing stack (not
at the reduction time). This class is called LR-attributed
grammars.

This class has solved the problem in S-attributed
grammars, which have to insert nonterminals (with an
empty right side) if semantic evaluation should take
place in the midst of the right side of productions.

The idea of LR-attributed grammars can be
demonstrated as follows using Fig. Al. In Fig. Al, the
subtree under ASST is an application of the attribute
grammar G1 (Fig. 1). A declaration part is added to pro-
vide an explanation. Assume that the LR parsing pro-
ceeded until ‘b’ of ‘a:=b-+c’ is read. At that point,
although the subtree under ‘E’ is not yet determined,
the LR state S of Fig. 2(a) can be determined due to the
LR parsing method. Thus the inherited attribute
ASST.env can be copied down to E.env, T.env and to
P.env through this LR state S. That is, information in
an ancestor node in the parsing tree can be seen through
this LR state. However, a condition must hold in order
to enable this. That is, the value of each inherited at-
tribute in this LR state, e.g., E.env, T.env and P.env,
must be determined uniquely. This is the informal mean-
ing of Def 4.3.

From the viewpoint of a compiler writer, LR-
attributed grammars allow him/her to see all the infor-
mation from the beginning of the source program up to
the point currently being processed. For example,
DCL.env can be seen at the present point ‘b’. In this
sense, LR-attributed grammars are similar to L-
attributed grammars where the information at the left
of the present point can be utilized [6] [20].
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