
Pipelining
GATE Overflow

PC

Y

MDR

MAR

Z
TEMP

R(n-1)

R0

IR

Instruction
decoder and
control logic

Internal processor bus

Control Signals

.

.

.

MUX

ALU

A B

Address lines

Data lines

Constant 4

Select

Add
Sub

XOR

Carry-in.
.

Memory
bus

ALU
control
lines

Single bus Data Execution
Consider the Execution of the instruction R1 <- R0 + R1

Instruction Fetch (Originally the instruction is in Physical Memory - its address is in
PC (this address is Virtual Address but that part is handled by MMU)

Step 1: MOV PC to MAR (Memory Address Register)

Step 2: Get Instruction in MDR (PC increment happens in parallel)

Step 3: MOV MDR to IR

Single bus Data Execution
Consider the Execution of the instruction R1 <- R0 + R1

Instruction Fetch (Originally the instruction is in Physical Memory - its address is in
PC (this address is Virtual Address but that part is handled by MMU)

Step 1: PCout, MARin, READ, SELECT 4, ADD, Zin (PC increment also starts
here)

Step 2: Zout, PCin, WMFC (Wait for Memory Function Complete), Yin (Yin is only
useful for branch instructions to get the target address)

Step 3: MDRout, IRin

Single bus Data Execution
Consider the Execution of the instruction R1 <- R0 + R1

● R0out, Yin
● R1out, ADD, SELECT Y, Zin
● Zout, R0in

Pipelining
Taking some of the slides from Washington University course. For full slides you
can visit
https://courses.cs.washington.edu/courses/cse378/07au/lectures/L11-Pipelined-D
atapath-And.pdf

https://courses.cs.washington.edu/courses/cse378/07au/lectures/L11-Pipelined-Datapath-And.pdf
https://courses.cs.washington.edu/courses/cse378/07au/lectures/L11-Pipelined-Datapath-And.pdf

4

Pipelining concepts

 A pipelined processor allows multiple instructions to execute at once, and
each instruction uses a different functional unit in the datapath.

 This increases throughput, so programs can run faster.

— One instruction can finish executing on every clock cycle, and simpler
stages also lead to shorter cycle times.

WBMEMEXIDIFadd $t5, $t6, $0
WBMEMEXIDIFor $s0, $s1, $s2

WBMEMEXIDIFand $t1, $t2, $t3
WBMEMEXIDIFsub $v0, $a0, $a1

WBMEMEXIDIFlw $t0, 4($sp)
987654321

Clock cycle

5

Pipelined Datapath

 The whole point of pipelining is to allow multiple instructions to execute
at the same time.

 We may need to perform several operations in the same cycle.

— Increment the PC and add registers at the same time.

— Fetch one instruction while another one reads or writes data.

 Thus, like the single-cycle datapath, a pipelined processor will need to
duplicate hardware elements that are needed several times in the same
clock cycle.

WBMEMEXIDIFadd $t5, $t6, $0
WBMEMEXIDIFor $s0, $s1, $s2

WBMEMEXIDIFand $t1, $t2, $t3
WBMEMEXIDIFsub $v0, $a0, $a1

WBMEMEXIDIFlw $t0, 4($sp)
987654321

Clock cycle

6

 We need only one register file to support both the ID and WB stages.

 Reads and writes go to separate ports on the register file.

 Writes occur in the first half of the cycle, reads occur in the second half.

One register file is enough

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers

7

Single-cycle datapath, slightly rearranged

 MemToReg

Read
address

Instruction

memory

Instruction
[31-0]

Address

Write
data

 Data

 memory

Read
data

MemWrite

MemRead

1

0

4

Shift

left 2

P

C

 Add

1

0

PCSrc

Sign

extend

ALUSrc

Result

Zero
ALU

ALUOp

Instr [15 - 0]
RegDst

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers

RegWrite

 Add

Instr [15 - 11]

Instr [20 - 16]
0

1

 0

 1

8

What’s been changed?

 Almost nothing! This is equivalent to the original single-cycle datapath.

— There are separate memories for instructions and data.

— There are two adders for PC-based computations and one ALU.

— The control signals are the same.

 Only some cosmetic changes were made to make the diagram smaller.

— A few labels are missing, and the muxes are smaller.

— The data memory has only one Address input. The actual memory
operation can be determined from the MemRead and MemWrite
control signals.

 The datapath components have also been moved around in preparation
for adding pipeline registers.

9

Multiple cycles

 In pipelining, we also divide instruction execution into multiple cycles.

 Information computed during one cycle may be needed in a later cycle.

— The instruction read in the IF stage determines which registers are
fetched in the ID stage, what constant is used for the EX stage, and
what the destination register is for WB.

— The registers read in ID are used in the EX and/or MEM stages.

— The ALU output produced in the EX stage is an effective address for
the MEM stage or a result for the WB stage.

 We added several intermediate registers to the multicycle datapath to
preserve information between stages, as highlighted on the next slide.

10

Registers added to the multi-cycle

Memory
data

register

Result

Zero

ALU

ALUOp

0

M
u
x

1

ALUSrcA

0

1

2

3

ALUSrcB

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers

RegWrite

Address

Memory

Mem
Data

Write
data

Sign

extend
Shift

left 2

0

M
u
x

1

PCSource

PC

A

B

ALU
Out

4[31-26]
[25-21]
[20-16]
[15-11]
[15-0]

Instruction
register

 IRWrite

0

M
u
x

1

 RegDst

0

M
u
x

1

 MemToReg

0

M
u
x

1

IorD

MemRead

MemWrite

PCWrite

11

Pipeline registers

 We’ll add intermediate registers to our pipelined datapath too.

 There’s a lot of information to save, however. We’ll simplify our
diagrams by drawing just one big pipeline register between each stage.

 The registers are named for the stages they connect.

IF/ID ID/EX EX/MEM MEM/WB

 No register is needed after the WB stage, because after WB the
instruction is done.

12

Pipelined datapath

Read
address

Instruction

memory

Instruction
[31-0]

Address

Write
data

 Data

 memory

Read
data

MemWrite

MemRead

1

0

 MemToReg

 4

Shift

left 2

 Add

Sign

extend

ALUSrc

Result

Zero
ALU

ALUOp

Instr [15 - 0]
RegDst

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers

RegWrite

 Add

Instr [15 - 11]

Instr [20 - 16]
0

1

 0

 1

IF/ID ID/EX EX/MEM MEM/WB

1

0

PCSrc

P

C

30

That’s a lot of diagrams there

 Compare the last nine slides with the pipeline diagram above.

— You can see how instruction executions are overlapped.

— Each functional unit is used by a different instruction in each cycle.

— The pipeline registers save control and data values generated in
previous clock cycles for later use.

— When the pipeline is full in clock cycle 5, all of the hardware units
are utilized. This is the ideal situation, and what makes pipelined
processors so fast.

 Try to understand this example or the similar one in the book at the end
of Section 6.3.

WBMEMEXIDIFadd $t5, $t6, $0
WBMEMEXIDIFor $s0, $s1, $s2

WBMEMEXIDIFand $t1, $t2, $t3
WBMEMEXIDIFsub $v0, $a0, $a1

WBMEMEXIDIFlw $t0, 4($sp)
987654321

Clock cycle

31

Performance Revisited

 Assuming the following functional unit latencies:

 What is the cycle time of a single-cycle implementation?

— What is its throughput?

 What is the cycle time of a ideal pipelined implementation?

— What is its steady-state throughput?

 How much faster is pipelining?

 A
L

U

Inst

mem
Reg

Read

 Data

 Mem

Reg

Write

3ns 2ns 2ns 3ns 2ns

32

Ideal speedup

 In our pipeline, we can execute up to five instructions simultaneously.

— This implies that the maximum speedup is 5 times.

— In general, the ideal speedup equals the pipeline depth.

 Why was our speedup on the previous slide “only” 4 times?

— The pipeline stages are imbalanced: a register file and ALU operations
can be done in 2ns, but we must stretch that out to 3ns to keep the
ID, EX, and WB stages synchronized with IF and MEM.

— Balancing the stages is one of the many hard parts in designing a
pipelined processor.

WBMEMEXIDIFadd $sp, $sp, -4
WBMEMEXIDIFor $s0, $s1, $s2

WBMEMEXIDIFand $t1, $t2, $t3
WBMEMEXIDIFsub $v0, $a0, $a1

WBMEMEXIDIFlw $t0, 4($sp)
987654321

Clock cycle

33

The pipelining paradox

 Pipelining does not improve the execution time of any single instruction.
Each instruction here actually takes longer to execute than in a single-
cycle datapath (15ns vs. 12ns)!

 Instead, pipelining increases the throughput, or the amount of work done
per unit time. Here, several instructions are executed together in each
clock cycle.

 The result is improved execution time for a sequence of instructions, such
as an entire program.

WBMEMEXIDIFadd $sp, $sp, -4
WBMEMEXIDIFor $s0, $s1, $s2

WBMEMEXIDIFand $t1, $t2, $t3
WBMEMEXIDIFsub $v0, $a0, $a1

WBMEMEXIDIFlw $t0, 4($sp)
987654321

Clock cycle

