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We want to solve the recurrence relation
an = Aan—l + Ban—Q
where A and B are real numbers. The solutions depend on the nature of the roots of the characterstic

equation
s2—As—B=0 (1)

We consider three cases for the roots of (1).

1. If we have two distinct real roots s; and so, then
an = ast + 3sy.
2. If we have exactly one real root s, then

a, = as" + fns".
3. If we have two complex conjugate roots in polar form s; = rZ6 and ss = rZ(—6), then
an = r" (acos(nb) + Bsin(nb)).
In all cases, the numbers « and § can be determined if we are given the values of ag and a;.

Example 1. Consider the recurrence relation
an = 5ap—1 — 6a,_2 (2)
with initial conditions ag = 1 and a; = 4. The characteristic equation is
§2—5s+6=(s—2)(s—3)=0.
Since the roots are s = 2 and s = 3, any solution of (2) has the form a,, = 3™ 4+ (32". Therefore,

a=a+p=1
a1 =3a+20=4.

Solving this linear system, we get @« = 2 and § = —1. The solution of (2) with the given initial
conditions is then

’an:2o3”72”‘

Example 2. Consider the recurrence relation
Qn = 6ap_1 — 9ay,_2 (3)
with initial conditions ag = 4 and a; = 6. The characteristic equation is

s2—6s+9=(s—3)*=0.



Since s = 3 is the only root, any solution of (3) has the form a,, = a3™ 4+ 3n3™. Therefore,

apg=a=4
a1 = 3a+ 308 = 6.

Solving this system, we get & =4 and § = —2. The solution of (3) with its initial conditions is then

]an —4.3" — 2p3"

Example 3. Consider the recurrence relation
an = 20p—1 — 20p_2 (4)
with initial conditions ag = 1 and a; = 3. The characteristic equation is
§2—25+2=(s—1)2+1=0.

We have two complex conjugate roots s; = 1 +i and s; = 1 — i. In polar form s, = rZ6 with r = /2
and 6 = Z. Any solution of (4) has the form a,, = (vV2)" (v cos(nZ) + 3 sin(nZ)). Therefore,

a=a=1

alzﬁ(a\z—kﬁ\%) =3.

Solving this system, we get & = 1 and 8 = 2. The solution of (4) with its initial conditions is then

an = (V2)"(cos(nT) + 2 sin(nT))

Example 4. Consider the sequence of Fibonacci numbers that satisfy the recurrence relation
fo = faci 4+ fae (5)
with initial conditions fo = 0 and f; = 1. The characteristic equation is
s2—5—1=0.

The roots are s = (1 ++/5)/2 and s = (1 — v/5)/2. Then, any solution of (5) has the form
145\ -5\
fn=a< “f) +5< f)
2 2
fo=a+p=0

fi=a <1+2\/5> + 5 (12\/5> =1.

Solving this linear system, we get o = 1/4/5 and 3 = —1//5. Therefore, the Fibonacci numbers are
obtained by the following formula, commonly known as Binet’s formula.

s 1+v5)" 1 (1-v5)"
s\ 2 ) VB 2

Therefore,




A recurrence relation of the form
ap = Aan—l + Bap—2 + F(’I’L)

for F'(n) not identically zero is said to be nonhomogeneous. Its associated homogeneous recurrence
relation is
a, = Aap—_1 + Ban,_s.

Theorem 1. If a%p) s a particular solution of the nonhomogeneous recurrence relation
ap = Aap—1 + Ba,_2 + F(n), (6)
then every solution of (6) is of the form
n = agzh) + agp)’
(h)

where an, ’ is a solution of the associated homogeneous recurrence relation.

To apply this theorem, we need to find a particular solution of (6). This is a difficult problem in general
but a standard technique exists for simple types of F'(n) such as

e Polynomial, e.g. F(n)=>5n?—2n+1.
e Exponential, e.g. F(n)=3".
e Exponential x Polynomial, e.g. F(n)=2"(5n2+ 3n + 1).
Theorem 2. Consider the nonhomogeneous recurrence relation
ap, = Aap—1 + Ba,_2 + F(n),

where F(n) = t"(Polynomial of degree N). If t is not a root of s> — As — B = 0, then there is a
particular solution of the form

a® =t"(po + pin+ pan® + -+ pynl).
If t is a root of s> — As — B = 0 of multiplicity m, then there is a particular solution of the form
al) =t"n™(po + pin + pan® + - - + pyn’).
Note that if F(n) is simply a polynomial like F'(n) = 5n% — 2n + 1, then ¢t = 1 in the above theorem.
Example 4. Consider the recurrence relation
ap = 5ap_1 — 6a,_o + F(n).
The characteristic equation of its associated homogeneous equation is
2 —55+6=(s—2)(s—3)=0.
1. If F(n) = 2n?, then a particular solution has the form a?) = An? + Bn + C.

2. f F(n " (3n? +2n + 1), then a'? = 5"(An? + Bn + C).

5
5™ then a%p) =5"A.
3

", then a%p) = 3" An.

)
)
3. If F(n)
4. If F(n)

)

5. If F(n) =2"(3n + 1), then al?) = 2"n(An + B).

The values of the constants A, B, and C can be found by substituting aﬁlp ) in the recurrence relation.



Example 5. For the recurrence relation
ap, = 6a,-1 — 9a,—o + F(n),
the characteristic equation of its associated homogeneous equation is
s2—6s+9=(s—3)?=0.
1. If F(n) = 3™, then al?) = 3nAn2.
2. If F(n) =3"(5n + 1), then al?) = 3"n2(An + B).

3. If F(n) =2"(5n + 1), then a'?) = 2"(An + B).

Example 6. For the recurrence relation
ap, = 3ap_1 — 2an—2 + F(n),
the characteristic equation of its associated homogeneous equation is
2 —3s+2=(s—1)(s—2)=0.
If F(n) = 3n+ 1, then a particular solution has the form P = n(An + B).

To see this, observe that F'(n) = 1"(3n+ 1) and s = 1 is a root of multiplicity one of the characteristic
equation.

Finally, here are two basic recurrence relations.
Theorem 3. (Arithmetic sequence) If a, = an—1 +d and ag = «, then a, = dn + «.

Theorem 4. (Geometric sequence) If a, = ka,—1 and ag = «, then a, = ak™.



