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We want to solve the recurrence relation

an = Aan−1 + Ban−2

where A and B are real numbers. The solutions depend on the nature of the roots of the characterstic
equation

s2 −As−B = 0 (1)

We consider three cases for the roots of (1).

1. If we have two distinct real roots s1 and s2, then

an = αsn
1 + βsn

2 .

2. If we have exactly one real root s, then

an = αsn + βnsn.

3. If we have two complex conjugate roots in polar form s1 = r∠θ and s2 = r∠(−θ), then

an = rn
(
α cos(nθ) + β sin(nθ)

)
.

In all cases, the numbers α and β can be determined if we are given the values of a0 and a1.

Example 1. Consider the recurrence relation

an = 5an−1 − 6an−2 (2)

with initial conditions a0 = 1 and a1 = 4. The characteristic equation is

s2 − 5s + 6 = (s− 2)(s− 3) = 0.

Since the roots are s = 2 and s = 3, any solution of (2) has the form an = α 3n + β 2n. Therefore,

a0 = α + β = 1
a1 = 3α + 2β = 4.

Solving this linear system, we get α = 2 and β = −1. The solution of (2) with the given initial
conditions is then

an = 2 · 3n − 2n

Example 2. Consider the recurrence relation

an = 6an−1 − 9an−2 (3)

with initial conditions a0 = 4 and a1 = 6. The characteristic equation is

s2 − 6s + 9 = (s− 3)2 = 0.
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Since s = 3 is the only root, any solution of (3) has the form an = α 3n + β n3n. Therefore,

a0 = α = 4
a1 = 3α + 3β = 6.

Solving this system, we get α = 4 and β = −2. The solution of (3) with its initial conditions is then

an = 4 · 3n − 2n3n

Example 3. Consider the recurrence relation

an = 2an−1 − 2an−2 (4)

with initial conditions a0 = 1 and a1 = 3. The characteristic equation is

s2 − 2s + 2 = (s− 1)2 + 1 = 0.

We have two complex conjugate roots s1 = 1 + i and s1 = 1− i. In polar form s1 = r∠θ with r =
√

2
and θ = π

4 . Any solution of (4) has the form an = (
√

2)n
(
α cos(nπ

4 ) + β sin(nπ
4 )
)
. Therefore,

a0 = α = 1

a1 =
√

2
(

α
1√
2

+ β
1√
2

)
= 3.

Solving this system, we get α = 1 and β = 2. The solution of (4) with its initial conditions is then

an = (
√

2)n
(
cos(nπ

4 ) + 2 sin(nπ
4 )
)

Example 4. Consider the sequence of Fibonacci numbers that satisfy the recurrence relation

fn = fn−1 + fn−2 (5)

with initial conditions f0 = 0 and f1 = 1. The characteristic equation is

s2 − s− 1 = 0.

The roots are s = (1 +
√

5)/2 and s = (1−
√

5)/2. Then, any solution of (5) has the form

fn = α

(
1 +

√
5

2

)n

+ β

(
1−

√
5

2

)n

.

Therefore,

f0 = α + β = 0

f1 = α

(
1 +

√
5

2

)
+ β

(
1−

√
5

2

)
= 1.

Solving this linear system, we get α = 1/
√

5 and β = −1/
√

5. Therefore, the Fibonacci numbers are
obtained by the following formula, commonly known as Binet’s formula.

fn =
1√
5

(
1 +

√
5

2

)n

− 1√
5

(
1−

√
5

2

)n
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A recurrence relation of the form

an = Aan−1 + Ban−2 + F (n)

for F (n) not identically zero is said to be nonhomogeneous. Its associated homogeneous recurrence
relation is

an = Aan−1 + Ban−2.

Theorem 1. If a
(p)
n is a particular solution of the nonhomogeneous recurrence relation

an = Aan−1 + Ban−2 + F (n), (6)

then every solution of (6) is of the form

an = a(h)
n + a(p)

n ,

where a
(h)
n is a solution of the associated homogeneous recurrence relation.

To apply this theorem, we need to find a particular solution of (6). This is a difficult problem in general
but a standard technique exists for simple types of F (n) such as

• Polynomial, e.g. F (n) = 5n2 − 2n + 1.

• Exponential, e.g. F (n) = 3n.

• Exponential × Polynomial, e.g. F (n) = 2n(5n2 + 3n + 1).

Theorem 2. Consider the nonhomogeneous recurrence relation

an = Aan−1 + Ban−2 + F (n),

where F (n) = tn(Polynomial of degree N). If t is not a root of s2 − As − B = 0, then there is a
particular solution of the form

a(p)
n = tn(p0 + p1n + p2n

2 + · · ·+ pNnN ).

If t is a root of s2 −As−B = 0 of multiplicity m, then there is a particular solution of the form

a(p)
n = tnnm(p0 + p1n + p2n

2 + · · ·+ pNnN ).

Note that if F (n) is simply a polynomial like F (n) = 5n2 − 2n + 1, then t = 1 in the above theorem.

Example 4. Consider the recurrence relation

an = 5an−1 − 6an−2 + F (n).

The characteristic equation of its associated homogeneous equation is

s2 − 5s + 6 = (s− 2)(s− 3) = 0.

1. If F (n) = 2n2, then a particular solution has the form a
(p)
n = An2 + Bn + C.

2. If F (n) = 5n(3n2 + 2n + 1), then a
(p)
n = 5n(An2 + Bn + C).

3. If F (n) = 5n, then a
(p)
n = 5nA.

4. If F (n) = 3n, then a
(p)
n = 3nAn.

5. If F (n) = 2n(3n + 1), then a
(p)
n = 2nn(An + B).

The values of the constants A, B, and C can be found by substituting a
(p)
n in the recurrence relation.
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Example 5. For the recurrence relation

an = 6an−1 − 9an−2 + F (n),

the characteristic equation of its associated homogeneous equation is

s2 − 6s + 9 = (s− 3)2 = 0.

1. If F (n) = 3n, then a
(p)
n = 3nAn2.

2. If F (n) = 3n(5n + 1), then a
(p)
n = 3nn2(An + B).

3. If F (n) = 2n(5n + 1), then a
(p)
n = 2n(An + B).

Example 6. For the recurrence relation

an = 3an−1 − 2an−2 + F (n),

the characteristic equation of its associated homogeneous equation is

s2 − 3s + 2 = (s− 1)(s− 2) = 0.

If F (n) = 3n + 1, then a particular solution has the form a
(p)
n = n(An + B).

To see this, observe that F (n) = 1n(3n + 1) and s = 1 is a root of multiplicity one of the characteristic
equation.

Finally, here are two basic recurrence relations.

Theorem 3. (Arithmetic sequence) If an = an−1 + d and a0 = α, then an = dn + α.

Theorem 4. (Geometric sequence) If an = kan−1 and a0 = α, then an = αkn.
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