1. The area lying in the first quadrant and bounded by the circle

$$x^2 + y^2 = 4$$

and lines

$$x = 0$$
 and $x = 1$

is given by

(A)
$$\frac{\pi}{3} + \frac{\sqrt{3}}{2}$$

(B)
$$\frac{\pi}{6} + \frac{\sqrt{3}}{4}$$

(C)
$$\frac{\pi}{3} - \frac{\sqrt{3}}{2}$$

(A)
$$\frac{\pi}{3} + \frac{\sqrt{3}}{2}$$
 (B) $\frac{\pi}{6} + \frac{\sqrt{3}}{4}$ (C) $\frac{\pi}{3} - \frac{\sqrt{3}}{2}$ (D) $\frac{\pi}{6} + \frac{\sqrt{3}}{2}$

2. If (x_1, y_1) and (x_2, y_2) are the opposite endpoints of a diameter of a circle, then the equation of the circle is given by

(A)
$$(x-x_1)(y-y_1) + (x-x_2)(y-y_2) = 0$$

(B)
$$(x-x_1)(y-y_2) + (x-x_2)(y-y_1) = 0$$

(C)
$$(x-x_1)(x-x_2) + (y-y_1)(y-y_2) = 0$$

(D)
$$(x-x_1)(x-x_2) = (y-y_1)(y-y_2) = 0$$

3. If α , β and γ are the roots of the equation $x^3 + 3x^2 - 8x + 1 = 0$, then an equation whose roots are $\alpha + 1$, $\beta + 1$ and $\gamma + 1$ is given by

(A)
$$y^3 - 11y + 11 = 0$$

(B)
$$y^3 - 11y - 11 = 0$$

(C)
$$y^3 + 13y + 13 = 0$$

(D)
$$y^3 + 6y^2 + y - 3 = 0$$

4. Let $S \subseteq \mathbb{R}$. Consider the statement:

"There exists a continuous function $f: S \to S$ such that $f(x) \neq x$ for all $x \in S$."

This statement is false if *S* equals

(A)
$$[2,3]$$

(B)
$$(2,3]$$
 (C) $[-3,-2] \cup [2,3]$ (D) $(-\infty,\infty)$

(D)
$$(-\infty, \infty)$$

5. If A is a 2×2 matrix such that trace $A = \det A = 3$, then what is the trace of A^{-1} ?

(B)
$$1/3$$

(C)
$$1/6$$

(D)
$$1/2$$

- 6. In a class of 80 students, 40 are girls and 40 are boys. Also, exactly 50 students wear glasses. Then the set of all possible numbers of boys without glasses is
 - (A) $\{0, ..., 30\}$ (B) $\{10, ..., 30\}$ (C) $\{0, ..., 40\}$ (D) none of these
- 7. Let $n \ge 3$ be an integer. Then the statement

$$(n!)^{1/n} \le \frac{n+1}{2}$$

is

- (A) true for every $n \ge 3$
- (B) true if and only if $n \ge 5$
- (C) not true for $n \ge 10$
- (D) true for even integers $n \ge 6$, not true for odd $n \ge 5$
- 8. Let X_1 , X_2 and X_3 be chosen independently from the set $\{0, 1, 2, 3, 4\}$, each value being equally likely. What is the probability that the arithmetic mean of X_1 , X_2 and X_3 is the same as their geometric mean?
 - (A) $\frac{1}{5^2}$
- (B) $\frac{1}{5^3}$ (C) $\frac{3!}{5^3}$
- (D) $\frac{3}{5^3}$

9. A function y(x) that satisfies

$$\frac{dy}{dx} + 4xy = x$$

with the boundary condition y(0) = 0 is

(A) $y(x) = (1 - e^x)$

- (B) $y(x) = \frac{1}{4}(1 e^{-2x^2})$
- (A) $y(x) = (1 e^x)$ (C) $y(x) = \frac{1}{4}(1 e^{2x^2})$
- (D) $y(x) = \frac{1}{4}(1 \cos x)$
- 10. The inequality $|x^2 5x + 4| > (x^2 5x + 4)$ holds if and only if
 - (A) 1 < x < 4
- (B) $x \le 1$ and $x \ge 4$
- (C) 1 < x < 4
- (D) x takes any value except 1 and 4

11. The	digit in the ur	nit's place of the	number 2017^{20}	¹⁷ is		
(A)	1	(B) 3	(C) 7	(D) 9	
12. Which	ch of the follo	wing statements	s is true?			
(A)	(A) There are three consecutive integers with sum 2015					
(B)	There are fou	ır consecutive in	tegers with sun	n 2015		
(C)	There are five	e consecutive int	egers with sum	2015		
(D)	There are thr	ee consecutive i	ntegers with pro	oduct 2015		
13. An e	even function	f(x) has left der	ivative 5 at $x =$	0. Then		
(A)	the right deri	ivative of $f(x)$ at	x = 0 need not	exist		
(B)	the right deri	ivative of $f(x)$ at	x = 0 exists an	d is equal to 5		
(C)	the right deri	ivative of $f(x)$ at	x = 0 exists an	d is equal to —	5	
(D)	none of the a	bove is necessar	ily true			
14. Let (v_n) be a sequence	ence defined by	$v_1 = 1$ and			
		$v_{n+1} = \sqrt{v_n}$	$v_n^2 + \left(\frac{1}{5}\right)^n$			
for n	$n \geq 1$. Then $\lim_{n \to \infty} 1$	$\lim_{n \to \infty} v_n$ is				
(A)	$\sqrt{5/3}$	(B) $\sqrt{5/4}$	(C) 1	(D) nonexis	stent	
	<u> </u>	nents of a squar		odd integers v	vhile	
(A)	M must be si	ingular				
(B)	M must be n	onsingular				
(C)	there is not e	nough informati	on to decide th	e singularity of	M	
(D)	M must have	e a positive eiger	nvalue			

- 16. Let (x_n) be a sequence of real numbers such that the subsequences (x_{2n}) and (x_{3n}) converge to limits K and L respectively. Then
 - (A) (x_n) always converges
 - (B) if K = L, then (x_n) converges
 - (C) (x_n) may not converge, but K = L
 - (D) it is possible to have $K \neq L$
- 17. Suppose that X is chosen uniformly from $\{1, 2, ..., 100\}$ and given X=x, Y is chosen uniformly from $\{1,2,...,x\}$. Then P(Y=30)=
 - (A) $\frac{1}{100}$
 - (C) $\frac{1}{30}$

- (B) $\frac{1}{100} \times \left(\frac{1}{30} + \dots + \frac{1}{100}\right)$ (D) $\frac{1}{100} \times \left(\frac{1}{1} + \dots + \frac{1}{30}\right)$
- 18. Consider the following system of equations:

$$\begin{bmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ a & 9 & b & 10 \\ 6 & 8 & 10 & 13 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}.$$

The locus of all $(a, b) \in \mathbb{R}^2$ such that this system has at least two distinct solutions for (x_1, x_2, x_3, x_4) is

- (A) a parabola
- (B) a straight line
- (C) entire \mathbb{R}^2
- (D) a point
- 19. If α , β and γ are the roots of $x^3 px + q = 0$, then the value of the determinant

$$\begin{vmatrix}
\alpha & \beta & \gamma \\
\beta & \gamma & \alpha \\
\gamma & \alpha & \beta
\end{vmatrix}$$

is

- (A) p
- (B) p^2
- (C) 0
- (D) $p^2 + 6q$

20. The number of ordered pairs (X,Y) , where X and Y are $n\times n$ real matrices such that $XY-YX=I$ is					
(A) 0	(B) 1	(C) n	(D) infinite		
faulty. They	21. There are four machines and it is known that exactly two of them are faulty. They are tested one by one in a random order till both the faulty machines are identified. The probability that only two tests are required is				
(A) $\frac{1}{2}$	(B) $\frac{1}{3}$	(C) $\frac{1}{4}$	(D) $\frac{1}{6}$		
22. The five vowels—A, E, I, O, U—along with 15 X's are to be arranged in a row such that no X is at an extreme position. Also, between any two vowels there must be at least 3 X's. The number of ways in which this can be done is					
(A) 1200	(B) 1800	(C) 2400	(D) 3000		
	23. What is the smallest degree of a polynomial with real coefficients and having roots 2ω , $2 + 3\omega$, $2\omega^2$, $-1 - 3\omega$ and $2 - \omega - \omega^2$?				
[Here $\omega \neq 1$ is a cube root of unity.]					
(A) 5	(B) 7	(C) 9	(D) 10		
24. The number of polynomial functions f of degree ≥ 1 satisfying					
$f(x^2) = (f(x))^2 = f(f(x))$					
for all real x , is					
(A) 0	(B) 1	(C) 2	(D) infinitely many		

25. For $a, b \in \mathbb{R}$, and b > a, the maximum possible value of the integral

$$\int_{a}^{b} (7x - x^2 - 10) dx$$

is

- (A) $\frac{7}{2}$ (B) $\frac{9}{2}$ (C) $\frac{11}{2}$ (D) none of these
- 26. Let n be the number of ways in which 5 men and 7 women can stand in a queue such that all the women stand consecutively. Let m be the number of ways in which the same 12 persons can stand in a queue such that exactly 6 women stand consecutively. Then the value of $\frac{m}{n}$ is
 - (A) 5 (B) 7 (C) $\frac{5}{7}$ (D) $\frac{7}{5}$
- 27. A box contains 5 fair coins and 5 biased coins. Each biased coin has probability of a head $\frac{4}{5}$. A coin is drawn at random from the box and tossed. Then a second coin is drawn at random from the box (without replacing the first one). Given that the first coin has shown head, the conditional probability that the second coin is fair, is
 - (A) $\frac{20}{39}$ (B) $\frac{20}{37}$ (C) $\frac{1}{2}$
- 28. Let *H* be a subgroup of a group *G* and let *N* be a normal subgroup of *G*. Choose the correct statement:
 - (A) $H \cap N$ is a normal subgroup of both H and N
 - (B) $H \cap N$ is a normal subgroup of H but not necessarily of N
 - (C) $H \cap N$ is a normal subgroup of N but not necessarily of H
 - (D) $H \cap N$ need not be a normal subgroup of either H or N

29. Suppose the rank of the matrix

$$\left(\begin{array}{cccc}
1 & 1 & 2 & 2 \\
1 & 1 & 1 & 3 \\
a & b & b & 1
\end{array}\right)$$

is 2 for some real numbers a and b. Then b equals

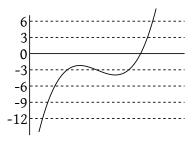
(A) 1

(B) 3

(C) 1/2

(D) 1/3

30. The graph of a cubic polynomial f(x) is shown below. If k is a constant such that f(x) = k has three real solutions, which of the following could be a possible value of k?



(A) 3

(B) 0

(C) -7

(D) -3

BOOKLET NO. TEST CODE: MMA

Forenoon

Questions: 30 Time: 2 hours

Write your Name, Registration Number, Test Centre, Test Code and the Number of this booklet in the appropriate places on the answersheet.

For each question, there are four suggested answers of which only one is correct. For each question indicate your choice of the correct answer by darkening the appropriate oval (•) completely on the answer sheet.

4 marks are allotted for each correct answer, 0 mark for each incorrect answer and 1 mark for each unattempted question.

ALL ROUGH WORK MUST BE DONE ON THIS BOOKLET ONLY.
YOU ARE NOT ALLOWED TO USE CALCULATORS IN ANY FORM.

1. If A is a 2×2 matrix such that $\operatorname{trace} A = \det A = 3$, then what is the trace of A^{-1} ?				
(A) 1	(B) 1/3	(C) 1/6	(D) 1/2	
		ne equation x^3+3x+1 , $\beta+1$ and $\gamma+1$	$x^2 - 8x + 1 = 0, \text{ then}$ - 1 is given by	
(A) $y^3 - 1$	1y + 11 = 0	(B) y	$^3 - 11y - 11 = 0$	
(C) $y^3 + 13$	3y + 13 = 0	(D) y	$y^3 + 6y^2 + y - 3 = 0$	
3. If α , β and γ are the roots of $x^3-px+q=0$, then the value of the determinant $ \begin{vmatrix} \alpha & \beta & \gamma \\ \beta & \gamma & \alpha \\ \gamma & \alpha & \beta \end{vmatrix} $				
is				
(A) p	(B) p^2	(C) 0	(D) $p^2 + 6q$	
4. The number	of polynomial fur	nctions f of degree	≥ 1 satisfying	
$f(x^2) = (f(x))^2 = f(f(x))$				
for all real x	, is			
(A) 0	(B) 1	(C) 2	(D) infinitely many	
5. If (x_1, y_1) and (x_2, y_2) are the opposite endpoints of a diameter of a circle, then the equation of the circle is given by				
(A) $(x-x_1)(y-y_1) + (x-x_2)(y-y_2) = 0$				
(B) $(x-x_1)(y-y_2) + (x-x_2)(y-y_1) = 0$				
	$)(x-x_2)+(y-y$, (,		
(D) $(x - x_1)$	$(x-x_2) = (y-y_1)$	$(y_1)(y-y_2)=0$		

6. Consider the following system of equations:

$$\begin{bmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ a & 9 & b & 10 \\ 6 & 8 & 10 & 13 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}.$$

The locus of all $(a,b) \in \mathbb{R}^2$ such that this system has at least two distinct solutions for (x_1, x_2, x_3, x_4) is

- (A) a parabola
- (B) a straight line
- (C) entire \mathbb{R}^2
- (D) a point

7. The inequality $|x^2 - 5x + 4| > (x^2 - 5x + 4)$ holds if and only if

- (A) 1 < x < 4 (B) $x \le 1$ and $x \ge 4$
- (C) 1 < x < 4
- (D) x takes any value except 1 and 4

8. Suppose the rank of the matrix

$$\left(\begin{array}{cccc}
1 & 1 & 2 & 2 \\
1 & 1 & 1 & 3 \\
a & b & b & 1
\end{array}\right)$$

is 2 for some real numbers *a* and *b*. Then *b* equals

- (A) 1
- (B) 3
- (C) 1/2
- (D) 1/3

9. A box contains 5 fair coins and 5 biased coins. Each biased coin has probability of a head $\frac{4}{5}$. A coin is drawn at random from the box and tossed. Then a second coin is drawn at random from the box (without replacing the first one). Given that the first coin has shown head, the conditional probability that the second coin is fair, is

- (A) $\frac{20}{39}$
- (B) $\frac{20}{37}$
- (C) $\frac{1}{2}$
- (D) $\frac{7}{13}$

10. Let (x_n) be a sequence of real numbers such that the subsequences			
(x_{2n}) and (x_{3n}) converge to limits K and L respectively. Then			
(A) (x_n) always converges			
(B) if $K = L$, then (x_n) converges			
(C) (x_n) may not converge, but $K = L$			
(D) it is possible to have $K \neq L$			
11. Let X_1 , X_2 and X_3 be chosen independently from the set $\{0, 1, 2, 3, 4\}$, each value being equally likely. What is the probability that the arithmetic mean of X_1 , X_2 and X_3 is the same as their geometric mean?			
(A) $\frac{1}{5^2}$ (B) $\frac{1}{5^3}$ (C) $\frac{3!}{5^3}$			
12. Let $S \subseteq \mathbb{R}$. Consider the statement:			
"There exists a continuous function $f:S\to S$ such that $f(x)\neq x$ for all $x\in S$."			
This statement is false if S equals			
(A) $[2,3]$ (B) $(2,3]$ (C) $[-3,-2] \cup [2,3]$ (D) $(-\infty,\infty)$			
13. Let $n \ge 3$ be an integer. Then the statement			
$(n!)^{1/n} \le \frac{n+1}{2}$			
is			
(A) true for every $n \geq 3$			
(B) true if and only if $n \geq 5$			
(C) not true for $n \ge 10$			
(D) true for even integers $n \ge 6$, not true for odd $n \ge 5$			
14. In a class of 80 students, 40 are girls and 40 are boys. Also, exactly 50 students wear glasses. Then the set of all possible numbers of boys without glasses is			
(A) $\{0, \dots, 30\}$ (B) $\{10, \dots, 30\}$ (C) $\{0, \dots, 40\}$ (D) none of these			

	(B) M mus	t be nonsingular		
	(C) there is	not enough informati	on to decide the singu	larity of M
	(D) M mus	t have a positive eigen	ivalue	
16.	in a row suc	vels—A, E, I, O, U—al h that no X is at an ex there must be at least 3 one is	treme position. Also,	between any
	(A) 1200	(B) 1800	(C) 2400	(D) 3000
17.	An even fun	ction $f(x)$ has left deri	ivative 5 at $x = 0$. The	n
	(A) the righ	nt derivative of $f(x)$ at	x = 0 need not exist	
	(B) the righ	nt derivative of $f(x)$ at	x = 0 exists and is eq	ual to 5
		nt derivative of $f(x)$ at	_	
		the above is necessari	-	
18.	faulty. They	ur machines and it is k are tested one by or ines are identified. The	ne in a random order	till both the
	(A) $\frac{1}{2}$	(B) $\frac{1}{3}$	(C) $\frac{1}{4}$	(D) $\frac{1}{6}$
19.	A function y	y(x) that satisfies		
		$\frac{dy}{dx} + 4$	xy = x	
	with the bou	undary condition $y(0)$	= 0 is	
	(A) $y(x) =$	$=(1-e^x)$	(B) $y(x) = \frac{1}{4}$	$(1 - e^{-2x^2})$
	(C) $y(x) =$	$\frac{1}{4}(1-e^{2x^2})$	(D) $y(x) = \frac{1}{2}$	$\frac{1}{4}(1-\cos x)$

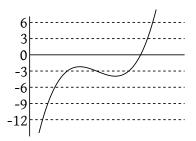
15. The diagonal elements of a square matrix M are odd integers while

the off-diagonals are even integers. Then

(A) M must be singular

20.	Let <i>H</i> be a subgroup <i>G</i> . Choose the corre		d let N be a normal ${\mathfrak s}{\mathfrak t}$	abgroup of
	(A) $H \cap N$ is a nor	mal subgroup of b	both H and N	
	(B) $H \cap N$ is a normal subgroup of H but not necessarily of N			
	(C) $H \cap N$ is a nor	mal subgroup of I	V but not necessarily	of H
	(D) $H \cap N$ need no	ot be a normal sub	group of either H or	N
21.	in a queue such tha number of ways in	t all the women st which the same 1	n 5 men and 7 women and consecutively. Le 2 persons can stand a secutively. Then the	et m be the in a queue
	(A) 5	(B) 7	(C) $\frac{5}{7}$	(D) $\frac{7}{5}$
22.	2. What is the smallest degree of a polynomial with real coefficients and having roots 2ω , $2 + 3\omega$, $2\omega^2$, $-1 - 3\omega$ and $2 - \omega - \omega^2$?			
	[Here $\omega \neq 1$ is a cub	e root of unity.]		
	(A) 5	(B) 7	(C) 9	(D) 10
23.	Which of the follow	ing statements is	true?	
	(A) There are three	e consecutive integ	gers with sum 2015	
	(B) There are four	consecutive integ	ers with sum 2015	
	(C) There are five of	consecutive intege	ers with sum 2015	
	(D) There are three	e consecutive integ	gers with product 201	5
24.			y from $\{1, 2,, 100\}$ 1, 2,, x $\}$. Then $P(Y)$	
	(A) $\frac{1}{100}$ (C) $\frac{1}{30}$		(B) $\frac{1}{100} \times \left(\frac{1}{30} + \cdots \right)$ (D) $\frac{1}{100} \times \left(\frac{1}{1} + \cdots \right)$	$ + \frac{1}{100} $ $ + \frac{1}{30} $

25. The graph of a cubic polynomial f(x) is shown below. If k is a constant such that f(x) = k has three real solutions, which of the following could be a possible value of k?



- (A) 3
- (B) 0
- (C) -7
- (D) -3
- 26. The area lying in the first quadrant and bounded by the circle

$$x^2 + y^2 = 4$$

and lines

$$x = 0$$
 and $x = 1$

is given by

- (A) $\frac{\pi}{3} + \frac{\sqrt{3}}{2}$ (B) $\frac{\pi}{6} + \frac{\sqrt{3}}{4}$ (C) $\frac{\pi}{3} \frac{\sqrt{3}}{2}$ (D) $\frac{\pi}{6} + \frac{\sqrt{3}}{2}$

- 27. For $a, b \in \mathbb{R}$, and b > a, the maximum possible value of the integral

$$\int_{a}^{b} (7x - x^2 - 10)dx$$

is

- (A) $\frac{7}{2}$ (B) $\frac{9}{2}$ (C) $\frac{11}{2}$
- (D) none of these
- 28. The digit in the unit's place of the number 2017^{2017} is
 - (A) 1
- (B) 3
- (C) 7
- (D) 9

29. Let (v_n) be a sequence defined by $v_1=1$ and

$$v_{n+1} = \sqrt{v_n^2 + \left(\frac{1}{5}\right)^n}$$

for $n \ge 1$. Then $\lim_{n \to \infty} v_n$ is

- (A) $\sqrt{5/3}$
- (B) $\sqrt{5/4}$
- (C) 1
- (D) nonexistent
- 30. The number of ordered pairs (X,Y), where X and Y are $n \times n$ real matrices such that XY YX = I is
 - (A) 0
- (B) 1
- (C) n
- (D) infinite