
The Two Pass Assemblera
Teodor Rus

rus@cs.uiowa.edu

The University of Iowa, Department of Computer Science

a
These slides have been developed by Teodor Rus. They are copyrighted materials and may not be used in other course settings outside of the University of Iowa in

their current form or modified form without the express written permission of the copyright holder. During this course, students are prohibited from selling notes to or being

paid for taking notes by any person or commercial firm without the express written permission of the copyright holder.

Introduction to System Software – p.1/48

The assembler
Assembler : AL → ML where:

• AL is specified on three levels of structuring:
1. Generators: mnemonics (operations, directives, immediate values) and user

defined symbols (labels, operands, expressions)

2. Statements: [Label:] Mnemonic [Operands] [Comment]

3. Program: Sequence of statements.

• ML is specified on three levels of structuring:
1. Machine codes: operations, registers, immediate values, address

expressions.

2. Instruction and data patterns.;

3. Machine language program: sequence of instruction and data.

Introduction to System Software – p.2/48

Assembler implementation
A three readings of assembly language program
that perform:

1. Recognize statement generators, map them into machine codes
and store them into tables (SYMTAB).

2. Recognize statements, map them into internal forms, (IFAS), and
store them into the File of Internal Form, (FIF).

3. Recognize program in terms of its statements, map each IFAS in
FIF into the actual machine representation using its generator
translations, and map FIF into the File of Object Generated
(FOG).

Introduction to System Software – p.3/48

Optimization
The readings (2) and (3) can be combined thus
leading to a two pass assembler:

• Pass 1 that performs generator translation.

• Pass 2 that performs program translation.

Note: the notion of pass actually refers to the reading of the assembly

language program by the assembler.

Introduction to System Software – p.4/48

Specification
• Pass1 reads the assembly source program statement by

statement. For each statement translates its generators, saves
their translations in appropriate table (called SYMTAB), and
generates an intermediate form of the statement.

Note: For optimization reason the source language program may be transformed

into an intermediate language program which is written into a file called the File of

Internal Form, FIF.

• Pass2 examines FIF statement by statement. For each statement
S in FIF, Pass2 searches for its generator translations in SYMTAB,
use them to generate the machine language representation of S,
M(S), and then assemble M(S) into the machine language
program.

Introduction to System Software – p.5/48

Data structures
Assembler implementation is based on two major
data structures: Operation Table (OPTAB) and
Symbol Table (SYMTAB).

• For each mnemonic N the OPTAB contains:
1. Mnemonic type and its Machine language expression;

2. The pattern M(N) generated by Pass2 when a statement with mnemonic N

is encountered;

3. The function called by Pass1 to translate the assembly language statements
whose mnemonic is N ;

4. The function called by Pass2 to instantiate the pattern M(N) when a
statement with mnemonic N is encountered.

• SYMTAB, that holds the translation of user defined symbols.

Introduction to System Software – p.6/48

Facts
For optimization and generality purposes the
following supplementary data structures may
also be supported by the assembler:

1. Internal Form of Assembly Statement (IFAS) that allow the
assembler to perform only one reading of the source;

2. File of Internal Form (FIF) generated by Pass1 to holds the
internal representation of the source and to be processed by
Pass2;

3. File of Object Generated (FOG), that holds machine language
form of an assembled module.

Introduction to System Software – p.7/48

OPTAB design
OPTAB is the heart of the assembler.
OPTAB structuring results from the following analysis:

• Since mnemonics are given OPTAB is predefined. There are four
types of mnemonics in a general assembly language:
1. Machine operations, ADD, SUB, DIV, etc. Their type in OPTAB is O.

2. Data definitions called pseudo-operations or directives, such as
x DV.integer 20; x EQU y, etc.. Their type in OPTAB is P.

3. Macro-operation definitions. Their type in OPTAB is P.

4. Macro operation call. Their type in OPTAB is C.

Introduction to System Software – p.8/48

Example macros
• Macro definition:

PUSH DMACRO #1, #2;

Load #1;

Store Stack[#2];

Increment #2;

EMACRO

Note: parameters are identified by prefixing them with the symbol
#.

• Macro call:

MACCALL PUSH ALPHA, BETA;

Introduction to System Software – p.9/48

Oolong mnemonics
In Oolong there are only two kinds of
mnemonics:

• Directives, (pseudo-operations) that represent instructions to
the assembler. Their type in OPTAB is D;

• Byte-codes that represent machine operations. Their type in
OPTAB is B.

Introduction to System Software – p.10/48

Assumptions
• Internal Form of Assembly Statement, (IFAS), is the same for all

AL and ML.

• Each mnemonic is associated with a translation pattern

the binary pattern that is used by Pass 2 to translate AL
statements having this mnemonic. it.

• Each mnemonic is associated with the function
StmtMap : Statement → IFAS

called by Pass 1 when a statement having this mnemonic is
discovered.

• Each mnemonic is associated with the function
GenMap : IFAS → Instruction/Data Words

called by Pass 2 when a statement having this mnemonic is
discovered.

Introduction to System Software – p.11/48

OPTAB entry
The OPTAB entry is shown in Figure 1

StmtMap : Statement → IFAS

GenMap : IFAS → translation patter

translation pattern
Mnemonic OpCode O|P |M |C

Figure 1: OPTAB entry

Note: for an Oolong assembler the fields O|P |M |C should be

ByteCode|Directive

Introduction to System Software – p.12/48

Example 1
OPTAB entry for a Mixal assembler is in Figure 2

StmtMap : Statement → IFAS

GenMap : IFAS → Addr Index Ext OpCode

∗ ∗ ∗∗ ∗ ∗ ∗ ∗∗ ∗

Mnemonic OpCode O|P |M |C

Figure 2: OPTAB entry

Note: the parameters of the translation pattern in this example

are: address denoted by ∗ ∗ ∗∗, index denoted by ∗ ∗ ∗, extension

denoted by ∗∗, and OpCode denoted by ∗, respectively.

Introduction to System Software – p.13/48

Notations
Here we use the machine language structure of
Mix machine, where:

• ∗ ∗ ∗∗ is the address field

• ∗ ∗ ∗ is the index or indirection field

• ∗∗ is the field specifier, OpCode extension, or I/O device

• ∗ is the opcode field

Introduction to System Software – p.14/48

Example 2
OPTAB entry for Oolong assembler is in Figure 3.

StmtMap : Statement → IFAS

GenMap : IFAS → ByteCode

ByteCode Pattern
Mnemonic OpCode B | D

Figure 3: OPTAB entry

Note: B stands for Byte Code and D stands for Directive.

Introduction to System Software – p.15/48

Structure of the OPTAB
• OPTAB is constructed by the assembler designer;

• OPTAB is used by the assembler: for each statement in the
assembly program the assembler searches the mnemonic in
OPTAB;

• OPTAB is never updated. Efficient search is required.

Introduction to System Software – p.16/48

OPTAB implementation
The following are the choices for OPTAB
implementation:

• array and binary search; complexity: O(log(OPTAB − length))

• linked list and linear search; complexity O(OPTAB − length))

• hash table and direct access.

Suggested: array or hash table

Introduction to System Software – p.17/48

Symbol table, SYMTAB
• SYMTAB stores the symbols defined by the user in the assembly

program, such as identifiers, constants, labels, etc.

• SYMTAB is dynamic and its length cannot be predicted.
• Hence, choices for SYMTAB implementation are:

1. array,

2. linked list,

3. hash table.

Introduction to System Software – p.18/48

SYMTAB implementations
Choosing a data structure for SYMTAB
implementation:

• Array of records and linear search. This implies estimating a
maximum size. Not advisable.

• Linked list and linear search: This is too expensive.
• Hash table and direct access implemented by two tables:

1. a fixed size table on which hash function operate, and

2. a variable size table implemented as a linked list starting from each entry of
the fixed part.

Introduction to System Software – p.19/48

Our choice
Hash table, where hash-function is the symbol
type! This means that we will use:

• A fixed size table whose entries are the types of the symbols used
in the assembly program. This is called further the Type Definition
Table (TDT).

• A variable size table called Object Definition Table (ODT). ODT
will be structured as a collection of linked lists, each of which
containing all the symbols of a given type.

Note: the header of an ODT linked list is the TDT entry of the type that

ODT list accumulate. Hence, an ODT list appears as the overflow of a

TDT entry.

Introduction to System Software – p.20/48

Fact
TDT contain the undefined type.
Management:

• When a symbol is read be the assembler and its type is
determined to be t it is entered in the ODT list whose header is
TDT[t].

• When a symbol is read by the assembler and its type cannot be
determined, the symbol is stored in the ODT list whose header is
TDT[undefined].

• When the type of a symbols in the ODT list whose header is
TDT[undefined] is determined to be t the symbol is migrated in
the list whose header is TDT[t].

Introduction to System Software – p.21/48

Rationale
The rationale for (TDT,ODT) implementations of the
SYMTAB are:

• Types are given and define completely the assembly language.

• Collecting all objects of the same type on the same linked list
allows us to optimizes assembler’s space and speed.

• Collecting all objects of the same type on the same linked list
allows us to optimize target program’s space and speed (think at
CFF representing JVM programs).

Introduction to System Software – p.22/48

Hash table
The hash table implementation of SYMTAB is
shown in Figure 4.

Record Overflow
1

. . .

k
. . .

n

Symbols - h -���
@@R

- Linked list

- Linked list

- Linked list

Figure 4: Hash table implementation of SYMTAB

Introduction to System Software – p.23/48

Customizing the hash table
For every computer platform (including JVM) the
hash-table implementations of the SYMTAB is
obtained by:

TDT is filled-out by the assembler constructor using the set of
types supported by computer architecture completed with the
undefined type.

• ODT entry is a standardized structure, characteristic to the ODT
entry, that is defined by the assembler constructor and is
manipulated by the assembler. That is, the Variable Part of
the SYMTAB a linked list of symbols of the same type.

• Hash function maps each symbol Symb into a tuple
(TDT(Symb),ODT(Symb)) where TDT(Symb) is the TDT entry
of the type of Symb in TDT and ODT(Symb) is the place of Symb
in the linked list of symbols of type TDT(Symb). Introduction to System Software – p.24/48

TDT entry
The structure of TDT entry is shown in Figure 5.
That is, each entry in TDT should have the following fields:

1. Type name

2. Type representation in the target language;

3. The list of operations defined on the type;

4. Type Location Counter, (TLC) which shows number of symbols of
this type discovered so far;

5. A pointer to the ODT-list holding the first symbol of this type.

Name Mrep Oper TLC First - Linked list of symbols

Figure 5: TDT entry

Introduction to System Software – p.25/48

Components of TDT entry
• Type name, such as integer, real, instruction, macro, address,

operator, undefined, etc.

• Type representation in machine language, Mrep, shows the
structure and the number of bytes occupied by a symbol of this
type.

• Operations, Oper, shows the operations available in assembly
language on symbols of this type.

• Type location counter, TLC, shows the number of symbols of this
type encountered so far in the assembly language program.

• Pointer to ODT showing the first symbol of this type in ODT.

Introduction to System Software – p.26/48

Facts
1. TDT entry can be customized to the kind of constructs a type

supports.

2. Example Oolong customization:
• TDT[method].Oper may show the collection of keywords a method can

have. TDT[method].Mrep may show the structure
〈ByteCode, ArrayofLocals[]〉 of the method.

• Similarly, TDT[class].Oper may show the keywords and
TDT[class].Mrep may show the structure of the Class File Format (CFF).

3. Other customizations may also be defined.

Introduction to System Software – p.27/48

Object Declaration Table
Each symbol in ODT is specified by its assembly
language form and its machine language
translation.

• Assembly language form of a symbol is specified by its name (a
string), its type (an index in TDT), and its value (binary translation
of the value)

• Machine language translation of a symbol is specified by: address
allocated, size of the object, object usage called mode.

Introduction to System Software – p.28/48

ODT Customization
ODT can also be customized by the assembler
implementer.
Example Oolong customization:

• A method may be represented by tuple
〈ByteCode, ArrayofLocals〉 where ByteCode is a pointer to a
stream of characters representing the method byte code and
ArrayofLocals is a pointer to the tuple
(Length,Locals[Length]) where Locals represent
arguments and variables as appropriate.

• A class may be represented by a pointer to the CFF containing
that class.

• Oolong constants can be represented as specified

Introduction to System Software – p.29/48

Usual modes are
• IM, immediate

• RV, relocatable value

• AV, absolute value

• UO, undefined object,

• XR, externally referenced

• GD, globally defined

• SD, section definition

Introduction to System Software – p.30/48

Relationships
Some symbols may be used to inter-relate
various sections of code.
Inter-relationships symbols are usually identified by their modes:

• GD, globally defined (or exported), GR, globally referenced (or
imported);

• SD, section definition (the symbol denoting a section of assembly
language code is by definition globally defined);

• For Oolong, the keywords representing properties of classes and
methods should be interpreted as modes.

Introduction to System Software – p.31/48

Example
An example TDT and ODT representing the SYMTAB of a conventional

assembler is in Figure 6

SYMTAB

?
ODTTDT Name Mrep Oper TLC

0 UND Null Null n - n undefined symbols

1 ExpOp Null Null 2 - Operations: + and -

2 Macro Null Null 0 - No macro-operations

3 Instr 4 Null 0 -No machine instructions
4 Addr 4 m - m address constants
5 Integer 4 k - k integer constants

6 Real 8 r - r real constants
7 Char 1 c - c char constants
8 String x s - s string constants

Figure 6: Symbol table implementation
Introduction to System Software – p.32/48

Operations on SYMTAB
The following are the operations performed by
the assembler of SYMTAB:

1. Search type: SearchTDT(type);

2. Search symbol: SearchODT(type,symbol), SearchODT(Symbol)

3. Delete symbol: DeleteODT(type,symbol)

4. Enter symbol: EnterODT(type,symbol)

5. Apend symbol: AppendODT(type,sympol),
PrependODT(type,symbol)

Introduction to System Software – p.33/48

C expressions
Potential C expressions used in SYMTAB
implementation are:

• Assembly language symbol representation:

struct Symbol

{

int kind;

char AssemblyForm[MaxLength];

};

• SYMTAB symbol representation:

struct SymtabSymbol

{

struct TDT *symbolType;

struct ODT *symbolAddr;

}

Introduction to System Software – p.34/48

IFAS
Internal Form of Assembly Statement (IFAS)
The following C structure can be used as implementation design for
FIFentry:
struct FIFentry

{

struct FIFhead header;

struct FIFbody body[MaxBodyLength];

};

Introduction to System Software – p.35/48

Structure of FIF entry
• FIFhead:

struct FIFhead

{

struct SymtabSymbol *SYMB; /* Label translation, if any */

struct MNEMONIC *MNEM; /* Mnemonic translation */

int BodyLength; /* Number of operands */

};

• FIF body:
struct FIFbody

{

int ExpLength; /* Specifies the length */

struct ExpElement expression[MaxExpLength];

} DummyExpression;

Introduction to System Software – p.36/48

More on FIF structure
Symbols in FIF are represented by pointers to
their definition in SYMTAB.

• A symbol in FIFheadi has type SYMTAB-entry and represents
the translations of the label;

• A mnemonic in FIFhead has type OPTAB-entry and represents
the mnemonic translation;

• The body of the FIFentry is the postfix form of the expression
operand.

Introduction to System Software – p.37/48

Postfix representation
The postfix form of an expression is an array of
MaxBodyLength expression elements.

• Each expression element is described by:

struct ExpElement

{

char type; /* Distinguishes the union element */

union element ExpressionElement;

};

union element

{

struct OBJSymbol *ToObject;

struct TDTSymbol *ToType;

char OPERATOR [MaxOpLength];

};

Introduction to System Software – p.38/48

FIFentry
The graphic picture of FIF entry Is shown in
Figure 7.

or Null

To ODT

OPTAB

Index in

Length Postfix form of operand

Label

?

Mnem

?

k Opnd1
. . . Opndi

. . . Opndk

? ?

Figure 7: FIFentry

Introduction to System Software – p.39/48

Pass1

• Read assembly program statement by
statement;

• For each statement perform:
1. Constructs the FIFhead with a BodyLength zero and write it

in FIFentry.

2. Search for the next operand specifier. If found, translate the
expression specifying the operand into postfix form, write the
postfix form of the expression into the DummyExpression,
and update BodyLength in FIFentry.

3. If end of the statement is encountered writes the FIFentry

into the FIF.

Introduction to System Software – p.40/48

Observations
• DummyExpression is constructed by translating the actual

symbols, storing them in the appropriate tables, and writing in
DummyExpression pointers to the symbol translation.

• When Pass1 reaches the end of the source program all
generators are translated.

• The Pass1 call a memory allocation function before passing the
control to the Pass2.

Introduction to System Software – p.41/48

C expression ofPass1

#define Symbols /* Maximum number of user defined symbols */

AssemblerPass_1 (FILE *source, FILE *target)

{

struct AssemblyStatement ALS, *APC;

struct FIFentry IFS, *FPC = &IFS;

struct SymTabEntry SymTab[Symbols];

APC = read (ALS, source);

while (APC->Opcode != End)

{

map_1 (APC, IFS, SymTab);

update(FPC);

write (FPC, target);

APC = read (ALS, source);

}

Introduction to System Software – p.42/48

Pass1, continuation
map_1 (APC, IFS, SymTab);

update(FPC);

write (FPC, target);

Memory allocation;

Construct ESD;

}

Note: ESD collects information about locally referenced and globally
defined symbols.

For Oolong such symbols are method and class names, and thus ESD

is the Method Table, MT.

Introduction to System Software – p.43/48

Pass2

Pass2 is called by the Pass1.

• Read FIF statement by statement;

• For each statement read from FIF, Pass2 maps it into machine
language code.

• Pass2 completes the translation by generating the Machine
Object Module, MOM =< ESD, Text, RLD >

Note: RLD is a directory of relocatable constants encountered in the

program.

Introduction to System Software – p.44/48

Oolong MOM
External symbol dictionary, ESD, in Oolong is
Method Table, MT.

• MT must be constructed such that it support inheritance and
method overriding

• There are no relocatable constants in Oolong.

• Text is the Class File Format, CFF

Hence, OolongMOM = 〈MT, CFF, ∅〉

Introduction to System Software – p.45/48

C expression ofPass2

AssemblerPass_2 (FILE *Target, FILE *MachineObject)

{

struct FIFentry IFS, *FPC;

struct MachineInstruction MLS, *MPC = &MLS;

struct SymTabEntry *SymTab = &SYMTAB;

write (ESD, MachineObject);

FPC = read (IFS, Target);

while (FPC->FIFhead->MNEM != End)

{

map_2 (FPC, MLS, SymTab);

update (MPC);

write (MLS, MachineObject);

Construct RLDentry if any;

FPC = read (IFS, Target);

}

Introduction to System Software – p.46/48

Pass2, continuation
map_2 (FPC, MLS, SymTab);

update(MPC);

write (MPC, MachineObject);

write (RLD, MachineObject);

}

Introduction to System Software – p.47/48

Machine Object Module
MOM =< ESD, Text,RLD >

• The ESD is the external symbol dictionary
A symbol in the assembly program is written in the ESD if it is
exported or imported; ESD is used by the memory allocation
routine and by the loader/linker

• Text is the binary form of the instruction and data words generated
by the assembler

• Relocatable code is the machine language code that depends
upon the memory area where program is loaded for execution; it
is recorded in the Relocation and Linking Directory, RLD.

Introduction to System Software – p.48/48

	The assembler
	Assembler implementation
	Optimization
	Specification
	Data structures
	Facts
	OPTAB design
	Example macros
	Oolong mnemonics
	Assumptions
	OPTAB entry
	Example 1
	Notations
	Example 2
	Structure of the OPTAB
	OPTAB implementation
	Symbol table, SYMTAB
	SYMTAB implementations
	Our choice
	Fact
	Rationale
	Hash table
	Customizing the hash table
	TDT entry
	Components of TDT entry
	Facts
	Object Declaration Table
	ODT Customization
	Usual modes are
	Relationships
	Example
	Operations on SYMTAB
	C expressions
	IFAS
	Structure of FIF entry
	More on FIF structure
	Postfix representation
	FIFentry
	$Pass_1$
	Observations
	C expression of $Pass_1$
	$Pass_1$, continuation
	$Pass_2$
	Oolong MOM
	C expression of $Pass_2$
	$Pass_2$, continuation
	Machine Object Module

