- 1. The value of $\frac{1}{\log_2 n} + \frac{1}{\log_3 n} + \frac{1}{\log_4 n} + \dots + \frac{1}{\log_{2017} n}$ (where n = 2017!) is
 - (A) 1 (B) 2 (C) 2017 (D) none of these.
- 2. The area of the shaded region in the following figure (all the arcs are circular) is

(A)
$$\pi$$
 (B) 2π (C) 3π (D) $\frac{9}{8}\pi$.

3. If
$$2f(x) - 3f(\frac{1}{x}) = x^2$$
 $(x \neq 0)$, then $f(2)$ is

- (A) $\frac{2}{3}$ (B) $-\frac{3}{2}$ (C) $-\frac{7}{4}$ (D) $\frac{5}{4}$.
- 4. If A is a 3×3 matrix satisfying $A^3 A^2 + A I = O$ (where O is the zero matrix and I is the identity matrix) then the value of A^4 is
 - (A) A (B) O (C) I (D) none of these.
- 5. The sum of the squares of the roots of $x^2 (a-2)x a 1 = 0$ becomes minimum when a is
 - (A) 0 (B) 1 (C) 2 (D) 5.

6. Let $f(x) = \frac{x-1}{x+1}$, $f^{k+1}(x) = f(f^k(x))$ for all k = 1, 2, 3, ..., 99. Then $f^{100}(10)$ is

$$(A) 1 (B) 10 (C) 100 (D) 101.$$

7. If
$$\begin{vmatrix} 10! & 11! & 12! \\ 11! & 12! & 13! \\ 12! & 13! & 14! \end{vmatrix} = k(10!)(11!)(12!)$$
, then the value of k is

$$(A) 1 (B) 2 (C) 3 (D) 4.$$

8. If x, y, z are in A.P. and a > 1, then a^x, a^y, a^z are in

- $(A) A.P. \qquad (B) G.P. \qquad (C) H.P. \qquad (D) none of these.$
- 9. The solution of $\log_5(\sqrt{x+5}+\sqrt{x})=1$ is
 - (A) 2 (B) 4 (C) 5 (D) none of these.
- 10. The value of the Boolean expression (with usual definitions) (A'BC')' + (AB'C)' is
 - (A) 0 (B) 1 (C) A (D) BC.
- 11. The coefficient of x^6y^3 in the expression $(x+2y)^9$ is
 - (A) 84 (B) 672 (C) 8 (D) none of the these.
- 12. Two sets have m and n elements. The number of subsets of the first set is 96 more than that of the second set. Then the values of m and n are
 - (A) 8 and 6 (B) 7 and 6 (C) 7 and 5 (D) 6 and 5.

13. The value of $\frac{x}{1-x^2} + \frac{x^2}{1-x^4} + \frac{x^4}{1-x^8} + \frac{x^8}{1-x^{16}}$ is

(A)
$$\frac{1}{1-x^{16}}$$
 (B) $\frac{1}{1-x^{12}}$
(C) $\frac{1}{1-x} - \frac{1}{1-x^{16}}$ (D) $\frac{1}{1-x} - \frac{1}{1-x^{12}}$.

14. If a, b, c are the sides of a triangle such that $a:b:c=1:\sqrt{3}:2$, then A:B:C (where A, B, C are the angles opposite to the sides of a, b, c respectively) is

(A)
$$3:2:1$$
 (B) $3:1:2$ (C) $1:2:3$ (D) $1:3:2$.

15. The number of solutions of

$$\tan^{-1}(x-1) + \tan^{-1}(x) + \tan^{-1}(x+1) = \tan^{-1}(3x)$$
 is
(A) 1 (B) 2 (C) 3 (D) 4

16. If $\cos x = \frac{1}{2}$, the value of the expression $\frac{\cos 6x + 6\cos 4x + 15\cos 2x + 10}{\cos 5x + 5\cos 3x + 10\cos x}$ is

(A)
$$\frac{1}{2}$$
 (B) 1 (C) $\frac{1}{4}$ (D) 0.

17. If $\cos^2 x + \cos^4 x = 1$, then $\tan^2 x + \tan^4 x$ is equal to

(A) 1 (B) 0 (C) 2 (D) none of these.

18. If a, b, c are the sides of ΔABC , then $\tan \frac{B-C}{2} \tan \frac{A}{2}$ is equal to

- (A) $\frac{b+c}{b-c}$ (B) $\frac{b-c}{b+c}$ (C) $\frac{c-b}{c+b}$ (D) none of these.
- 19. The angle between the tangents drawn from the point (-1,7) to the circle $x^2 + y^2 = 25$ is
 - (A) $\tan^{-1}(\frac{1}{2})$ (B) $\tan^{-1}(\frac{2}{3})$ (C) $\frac{\pi}{2}$ (D) $\frac{\pi}{3}$.

- 20. If the coordinates of the middle point of the portion of a line intercepted between the coordinate axes are (3, 2), then the equation of the straight line is
 - (A) 2x + 3y = 12 (B) 3x + 2y = 0

(C)
$$2x + 3y = 0$$
 (D) $3x + 2y = 12$

- 21. If a, b, c are in A.P., then the straight line ax + by + c = 0 will always pass through the point whose coordinates are
 - (A) (1, -2) (B) (1, 2) (C) (-1, 2) (D) (-1, -2).
- 22. Let $A_1, A_2, A_3, \ldots, A_n$ be *n* independent events such that $P(A_i) = \frac{1}{i+1}$ for $i = 1, 2, 3, \ldots, n$. The probability that none of $A_1, A_2, A_3, \ldots, A_n$ occurs is
 - (A) $\frac{n}{n+1}$ (B) $\frac{1}{n+1}$ (C) $\frac{n-1}{n+1}$ (D) none of these.
- 23. A determinant is chosen at random from the set of all determinants of order 2 with elements 0 or 1 only. The probability of choosing a non-zero determinant is
 - (A) $\frac{3}{16}$ (B) $\frac{3}{8}$ (C) $\frac{1}{4}$ (D) none of these.

24. The differential equation $x\frac{dy}{dx} - y = x^3$ with y(0) = 2 has

- (A) unique solution (B) no solution
- (C) infinite number of solutions (D) none of these.

25. If
$$f(x) = \begin{vmatrix} 2\cos^2 x & \sin 2x & -\sin x \\ \sin 2x & 2\sin^2 x & \cos x \\ \sin x & -\cos x & 0 \end{vmatrix}$$
,
then $\int_0^{\frac{\pi}{2}} [f(x) + f'(x)] dx$ is
(A) π (B) $\frac{\pi}{2}$ (C) 0 (D) 1.

26. The value of $\lim_{n \to \infty} \left(\frac{1}{1-n^2} + \frac{2}{1-n^2} + \dots + \frac{n}{1-n^2} \right)$ is

(A) 0 (B) $-\frac{1}{2}$ (C) $\frac{1}{2}$ (D) none of these.

27. The limit of the sequence $\sqrt{2}, \sqrt{2\sqrt{2}}, \sqrt{2\sqrt{2\sqrt{2}}}, \dots$ is

- (A) 1 (B) 2 (C) $2\sqrt{2}$ (D) ∞ .
- 28. A basket contains some white and blue marbles. Two marbles are drawn randomly from the basket without replacement. The probability of selecting first a white and then a blue marble is 0.2. The probability of selecting a white marble in the first draw is 0.5. What is the probability of selecting a blue marble in the second draw, given that the first marble drawn was white?

$$(A) 0.1 (B) 0.4 (C) 0.5 (D) 0.2.$$

29. The area (in square unit) of the portion enclosed by the curve $\sqrt{2x} + \sqrt{2y} = 2\sqrt{3}$ and the axes of reference is

$$(A) 2 (B) 4 (C) 6 (D) 8.$$

30. If $f(x) = e^{5x}$ and h(x) = f''(x) + 2f'(x) + f(x) + 2 then h(0) equals

$$(A) 38 (B) 8 (C) 4 (D) 0.$$

——×——