1. The value of $\frac{1}{\log _{2} n}+\frac{1}{\log _{3} n}+\frac{1}{\log _{4} n}+\cdots+\frac{1}{\log _{2017} n} \quad$ (where $n=2017$!) is
(A) 1
(B) 2
(C) 2017
(D) none of these.
2. The area of the shaded region in the following figure (all the arcs are circular) is

(A) π
(B) 2π
(C) 3π
(D) $\frac{9}{8} \pi$.
3. If $2 f(x)-3 f\left(\frac{1}{x}\right)=x^{2}(x \neq 0)$, then $f(2)$ is
(A) $\frac{2}{3}$
(B) $-\frac{3}{2}$
(C) $-\frac{7}{4}$
(D) $\frac{5}{4}$.
4. If A is a 3×3 matrix satisfying $A^{3}-A^{2}+A-I=O$ (where O is the zero matrix and I is the identity matrix) then the value of A^{4} is
(A) A
(B) O
(C) I
(D) none of these.
5. The sum of the squares of the roots of $x^{2}-(a-2) x-a-1=0$ becomes minimum when a is
(A) 0
(B) 1
(C) 2
(D) 5 .
6. Let $f(x)=\frac{x-1}{x+1}, f^{k+1}(x)=f\left(f^{k}(x)\right)$ for all $k=1,2,3, \ldots, 99$.

Then $f^{100}(10)$ is
(A) 1
(B) 10
(C) 100
(D) 101 .
7. If $\left|\begin{array}{lll}10! & 11! & 12! \\ 11! & 12! & 13! \\ 12! & 13! & 14!\end{array}\right|=k(10!)(11!)(12!)$, then the value of k is
(A) 1
(B) 2
(C) 3
(D) 4 .
8. If x, y, z are in A.P. and $a>1$, then a^{x}, a^{y}, a^{z} are in
(A) A.P.
(B) G.P.
(C) H.P.
(D) none of these.
9. The solution of $\log _{5}(\sqrt{x+5}+\sqrt{x})=1$ is
(A) 2
(B) 4
(C) 5
(D) none of these.
10. The value of the Boolean expression (with usual definitions) $\left(A^{\prime} B C^{\prime}\right)^{\prime}+\left(A B^{\prime} C\right)^{\prime}$ is
(A) 0
(B) 1
(C) A
(D) $B C$.
11. The coefficient of $x^{6} y^{3}$ in the expression $(x+2 y)^{9}$ is
(A) 84
(B) 672
(C) 8
(D) none of the these.
12. Two sets have m and n elements. The number of subsets of the first set is 96 more than that of the second set. Then the values of m and n are
(A) 8 and 6
(B) 7 and 6
(C) 7 and 5
(D) 6 and 5 .
13. The value of $\frac{x}{1-x^{2}}+\frac{x^{2}}{1-x^{4}}+\frac{x^{4}}{1-x^{8}}+\frac{x^{8}}{1-x^{16}}$ is
(A) $\frac{1}{1-x^{16}}$
(B) $\frac{1}{1-x^{12}}$
(C) $\frac{1}{1-x}-\frac{1}{1-x^{16}}$
(D) $\frac{1}{1-x}-\frac{1}{1-x^{12}}$.
14. If a, b, c are the sides of a triangle such that $a: b: c=1: \sqrt{3}: 2$, then $A: B: C$ (where A, B, C are the angles opposite to the sides of a, b, c respectively) is
(A) $3: 2: 1$
(B) $3: 1: 2$
(C) $1: 2: 3$
(D) $1: 3: 2$.
15. The number of solutions of

$$
\tan ^{-1}(x-1)+\tan ^{-1}(x)+\tan ^{-1}(x+1)=\tan ^{-1}(3 x) \text { is }
$$

(A) 1
(B) 2
(C) 3
(D) 4 .
16. If $\cos x=\frac{1}{2}$, the value of the expression $\frac{\cos 6 x+6 \cos 4 x+15 \cos 2 x+10}{\cos 5 x+5 \cos 3 x+10 \cos x}$ is
(A) $\frac{1}{2}$
(B) 1
(C) $\frac{1}{4}$
(D) 0 .
17. If $\cos ^{2} x+\cos ^{4} x=1$, then $\tan ^{2} x+\tan ^{4} x$ is equal to
(A) 1
(B) 0
(C) 2
(D) none of these.
18. If a, b, c are the sides of $\triangle A B C$, then $\tan \frac{B-C}{2} \tan \frac{A}{2}$ is equal to
(A) $\frac{b+c}{b-c}$
(B) $\frac{b-c}{b+c}$
(C) $\frac{c-b}{c+b}$
(D) none of these.
19. The angle between the tangents drawn from the point $(-1,7)$ to the circle $x^{2}+y^{2}=25$ is
(A) $\tan ^{-1}\left(\frac{1}{2}\right)$
(B) $\tan ^{-1}\left(\frac{2}{3}\right)$
(C) $\frac{\pi}{2}$
(D) $\frac{\pi}{3}$.
20. If the coordinates of the middle point of the portion of a line intercepted between the coordinate axes are $(3,2)$, then the equation of the straight line is
(A) $2 x+3 y=12$
(B) $3 x+2 y=0$
(C) $2 x+3 y=0$
(D) $3 x+2 y=12$.
21. If a, b, c are in A.P., then the straight line $a x+b y+c=0$ will always pass through the point whose coordinates are
(A) $(1,-2)$
(B) $(1,2)$
(C) $(-1,2)$
(D) $(-1,-2)$.
22. Let $A_{1}, A_{2}, A_{3}, \ldots, A_{n}$ be n independent events such that $P\left(A_{i}\right)=\frac{1}{i+1}$ for $i=1,2,3, \ldots, n$. The probability that none of $A_{1}, A_{2}, A_{3}, \ldots, A_{n}$ occurs is
(A) $\frac{n}{n+1}$
(B) $\frac{1}{n+1}$
(C) $\frac{n-1}{n+1}$
(D) none of these.
23. A determinant is chosen at random from the set of all determinants of order 2 with elements 0 or 1 only. The probability of choosing a non-zero determinant is
(A) $\frac{3}{16}$
(B) $\frac{3}{8}$
(C) $\frac{1}{4}$
(D) none of these.
24. The differential equation $x \frac{d y}{d x}-y=x^{3}$ with $y(0)=2$ has
(A) unique solution
(B) no solution
(C) infinite number of solutions
(D) none of these.
25. If $f(x)=\left|\begin{array}{ccc}2 \cos ^{2} x & \sin 2 x & -\sin x \\ \sin 2 x & 2 \sin ^{2} x & \cos x \\ \sin x & -\cos x & 0\end{array}\right|$, then $\int_{0}^{\frac{\pi}{2}}\left[f(x)+f^{\prime}(x)\right] d x$ is
(A) π
(B) $\frac{\pi}{2}$
(C) 0
(D) 1 .
26. The value of $\lim _{n \rightarrow \infty}\left(\frac{1}{1-n^{2}}+\frac{2}{1-n^{2}}+\cdots+\frac{n}{1-n^{2}}\right)$ is
(A) 0
(B) $-\frac{1}{2}$
(C) $\frac{1}{2}$
(D) none of these.
27. The limit of the sequence $\sqrt{2}, \sqrt{2 \sqrt{2}}, \sqrt{2 \sqrt{2 \sqrt{2}}}, \ldots$ is
(A) 1
(B) 2
(C) $2 \sqrt{2}$
(D) ∞.
28. A basket contains some white and blue marbles. Two marbles are drawn randomly from the basket without replacement. The probability of selecting first a white and then a blue marble is 0.2 . The probability of selecting a white marble in the first draw is 0.5 . What is the probability of selecting a blue marble in the second draw, given that the first marble drawn was white?
(A) 0.1
(B) 0.4
(C) 0.5
(D) 0.2 .
29. The area (in square unit) of the portion enclosed by the curve $\sqrt{2 x}+\sqrt{2 y}=2 \sqrt{3}$ and the axes of reference is
(A) 2
(B) 4
(C) 6
(D) 8 .
30. If $f(x)=e^{5 x}$ and $h(x)=f^{\prime \prime}(x)+2 f^{\prime}(x)+f(x)+2$ then $h(0)$ equals
(A) 38
(B) 8
(C) 4
(D) 0 .

