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Exercises for ACS 1, Fall 2004, sheet 1 – Solution sheet 
 
 
Exercise 1 (a) (5 points) How many words exist over the symbol set S = {1}? and over the 
symbol set S = {a, b}? (b) (2 points) How many words of length n exist over a symbol set of 
size k? (c) (5 points) How many languages exist over the symbol sets from (a)? (d) (3 points) 
How many languages of words of length n exist over a symbol set of size k?  
 
Solution: (a) The words over S = {1} are ε, 1, 11, 111, ... – that is, as many as there are 
integers, that is, countably many. The words over S = {a, b} can be listed in a sequence, 
shortest first, sorted alphebetically for same size: ε, a, b, aa, ab, ba, bb, aaa, aab, ... – that is, 
again countably many. (b) kn many. (c) In both cases, |Σ*| = �, that is, there are 2��  many 
languages over these alphabets – indeed, over any finite alphabet there are 2�� languages. (d) 

Since there are kn  many words of length n over a symbol set of size k, there are )(2
nk many 

such languages.  
 
Exercise 2 (10 points). Design a DFA for the language L = {w ∈  {0,1}* | w contains an 
uneven number of 0's}. Present your DFA by a graph representation (transition diagram). 
 
Solution. One solution is to take the DFA shown after Def. 3.3. in the script, redefining the 
set of accepting states to be {q1, q3}. 
 
Exercise 3 (50 points). A 2-level-NFA over a symbol set Σ is a generalization of NFAs. 
Informally, in a graph representation of a 2-level-NFA, transitions are labelled not by symbols 
but by ordinary NFAs (each over Σ). A transition graph of a 2-level-NFA might look like this: 
 

Start 

B 

C 

A 

B 

  
 
 
 
 
 
 
 
 

In this graph, A, B, C correspond to three ordinary NFAs over Σ. (a) (25 points) Give a formal 
definition of 2-level-NFAs and their accepted languages. (b) (25 points) Prove that the 
languages accepted by 2-level NFAs are the regular languages.  
 
Solution.  (a) Definition of 2-level-NFAs:  
 
Definition 1. Let Σ be an alphabet. Let Σ1 = {A1,...,Am}, where Ai is an NFA over Σ (i = 
1,...,m). A 2-level-NFA is a quintuple  (Q, Σ , Σ1, δ, q0, F), where Q = {q0, q1, ..., qn} is a 
finite set of states, Σ1 is the set of edge NFAs, δ: Q × Σ1 → Pot(Q) is the transition function, 
q0 is the start state, and F ⊆   Q is the set of accepting states.  
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Definition of languages accepted by 2-level-NFAs: First define the extended transition 
function for 2-level-NFAs like for ordinary NFAs, then proceed to the "2nd-level language" 
accepted by 2-level-NFAs, then proceed to the language accepted by a 2-level-NFA. 
Altogether this makes 3 definitions: 
 

Definition 2. The extended transition function  for a 2-level-NFA           

(Q, Σ , Σ
)(*:ˆ

1 QPotQ →Σ×δ
}{),1, δ, q0, F) is defined by (ˆ: qQq ∈∀ δ

� ,(ˆ)

q=ε

)
),(

 and 

11 ,(ˆ:* qAwQq δΣ∈∀Σ∈∀∈∀
wqp

wA
δ∈

= Apδ .  

Definition 3. The 2nd-level language accepted by a 2-level-NFA (Q, Σ , Σ1, δ, q0, F) is the set 

of all words w over Σ1 for which (qδ̂ 0, w) ∩ F ≠ ∅ .  
Definition 4. The language accepted by a 2-level-NFA B = (Q, Σ , Σ1, δ, q0, F) is the set set 
of all words w over Σ which can be written as w = v1v2...vk, where vj ∈ L(Aij) and  Ai1... Aik is 
in the 2nd-level language accepted by B. 
 
(b) We have to show that the set of regular languages is included in the set of languages 
accepted by 2-level-NFAs (part A) and vice versa (part B). 
 
Proof of part A: Let A = (Q, Σ ,  δ, q0, F) be an ordinary NFA with language L(A). For each a 
∈ Σ , let Aa be a ordinary NFA with L(Aa) = {a}. Put Σ1 = {Aa | a ∈ Σ }. Then the 2-level NFA 
B = (Q, Σ , Σ1, δ, q0, F) obviously accepts L(A). 
 
Proof of part B: Let the 2-level NFA B = (Q, Σ , Σ1, δ, q0, F) accept the language L(B), where 
Σ1 = {A1,...,Am} and where Ai = (Qi, Σ , δi, q0i, Fi). We may assume that the Qi are pairwise 
disjoint. Idea: replace any transition  of B by the complete set of transitions from 

A

pAq i =δ ),(

i, linking q to the start state of Ai by an ε-transition and all accepting states from Ai to p by ε-
transitions. Formally, define an ε-NFA C = (Q', Σ , δ', q0', F') by putting Q' = Q ∪  Q1 
∪  ... ∪  Qm, q0' = q0, F' = F and  
 
δ'  = δ1 ∪  ... ∪  δm ∪  {(q,ε, q0i) | (q, Ai , p) ∈  δ} ∪  {(pi,ε, p) | (q, Ai , p) ∈  δ and pi ∈  Fi}. 
 
(Note that we interpret transition functions here as sets of transitions). It is obvious that C 
accepts the same language as B.  
 
Exercise 4 (15 points). Give a regular expression that tries to catch in an electronic ad 
newspaper all ads where someone sells a car, like "Wanted: Mercedes model C, built 1999 or 
later", or "Want to buy: pickup in driveable condition, any make, cheap". As symbol set Σ, 
use the standard symbols that appear in newspapers (including interpunctuation and space). 
Minimal requirement for a solution: Your regexp should match the above two examples and 
at least 1000 others, but it should not match "For sale: Mercedes model C, built 1999" or 
"Want to pick up a friend". You may assume that some preprocessor has segmented the 
newspaper text into separate ads; your regexp should match complete car offer ads and reject 
other ads. Use the regexp syntax from the lecture. You don't have to use boldface for the 
regexps denoting single symbols. Full points are awarded to solutions that display some effort 
toward a useful regexp. 
 
Solution. This calls for creativity. Let's use shorthand S for the regexp 
(a+b+...+A+...+Z+...+9+0) that matches any one symbol from our symbol set, and let � be 
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the regexp denoting the space symbol. A minimalistic solution (which would meet the 
minimal requirements but would disappoint me and get few points) would be 
 
(ε+S)* (Wanted:��Mercedes�+ driveable). 
 
Exercise 5. Give a DFA [by way of its transition diagram] (10 points) and a regexp (10 
points) for the language L of words over {a,b,c} that do not contain ac as a subword. Explain 
by an informal description why your automaton and your regexp work. 
 
Solution. The DFA drawn below (left) obviously accepts all words that do contain the 
subword ac. By exchanging the set {q2} of accepting states for its complement {q0, q1}, one 
obtains a DFA (right) that accepts L.  
 
 
 
   

a a 

b a,b,c 

c 

b,c 

a 
q2 q1 Start q0 

b a,b,c 

c 

b,c 

a 
q2 q1 Start q0  

 
 
 
An equivalent regexp could be constructed from the solution DFA by the method from the 
lecture. Here is another one that is hand-crafted from the solution DFA, observing that L 
consists of all words whose state paths stay in states q0, q1; the regexp describes these paths in 
a way that is very similar to the regexp Ei = (R + SU*T)* SU*  given in the proof of prop. 3.3 
in the lecture notes: 
 
((b+c) +(a(b+a)))*a + ((b+c) +(a(b+a)))*   [ same as ((b+c) +(a(b+a)))*(a+ε) ] 
 
 
Exercise 6 (25 points). Design a DFA that accepts the language denoted by (((ε+a)bb)*)a*, 
by (i, 10 points) designing first an ε-NFA for this language (inspired by the methods from the 
proof of proposition 3.4, possibly with simplifications that suggest themselves), then (ii, 15 
points) deriving an equivalent DFA from that by the subset construction. Represent your 
automata by transition diagrams. 
 
Solution.  The left diagram shows an ε-NFA for our language, the right the DFA derived 
from it by the subset construction. 
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Exercises for ACS 1, Fall 2004, sheet 2 – Solution sheet  
 
Exercise 1. Let Σ = {0,1}. Prove or disprove the following two claims (R, S are language 
variables):  
 
(a, 5 points)   (L1 + L2)* L2  =Σ   (L1* L2)*   

(b, 20 points)  (L1 L2 + L1)* L1   = Σ   L1 (L2 L1 + L1)*  
 
Solution. (a) Claim is false. Consider an interpretation I that assigns the language {0} to L1 
and {1} to L2 . Then every word in LI((L1 + L2)* L2) must end with 1, but the word ε is in 
LI((L1* L2)*). Thus, the two regexps with language variables are not equivalent. 
 
(b) Claim is true. Using Corollary 3.7, we have to show that L((ab + a)* a) = L(a(ba + a)*). 
 
First we show that for any k ≥ 0, (ab + a)k a = a(ba + a) k (note that "=" here denotes 
equivalence of regexps). For k = 0 this is obvious. For other k, use distributivity from 
Proposition 3.5: 
 
(ab + a)k a  = (ab + a)k-1(ab + a) a 
  = (ab + a)k-1(aba + aa) 
  = (ab + a)k-1a (ba + a) 
  = (ab + a)k-2(ab + a)a (ba + a) 
  = (ab + a)k-2a (ba + a) 2 
  =  ... 
  =  a (ba + a)k 
 
Now if w ∈  L((ab + a)* a), then w ∈  L((ab + a)k a) for some k. Using our insight just derived, 
we conclude w ∈  L (a (ba + a)k) ⊆  L(a(ba + a)*). Thus L((ab + a)* a) ⊆  L(a(ba + a)*). The 
reverse direction follows analogically.  
 
Exercise 2 (10 points). Prove that the language L = {0n | n is a power of 2} is not regular.  
 
Solution. A clear case for the pumping lemma. Assume L is regular. Let m be a pumping 

lemma constant. Then 02m
 ∈  L. The P.L. implies that also 02m+k ∈  L, where 1 ≤ k ≤ m. But 

2m+k is not a power of 2, so 02m+k ∉  L, a contradiction. 
 
Exercise 3 (15 points). Let L be a regular language specified by a DFA, NFA, ε-NFA, or 
regexp. Show that it is decidable whether L = Σk for some k > 0.  
 
Solution. There are many ways of how this can be decided. One elegant way is to first 
construct the minimal DFA A for L. Then obviously L = Σk for some k iff A has the form  
 
 
 
 
Note. The use of the word "obviously" in mathematical proofs is a delicate affair. One never 
knows what the reader is ready to accept as obvious. Here I think we have a borderline case, 

qk 
Σ

...
Σ

q1 
Σ 

Start 
q0 
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and one might feel the need to prove that if L = Σk then the minimal automaton actually has 
the given form (it is really obviously obvious that this kind of DFA accepts L = Σk, so the only 
possibly questionable claim is its minimality). Minimality of DFAs of the shown form could 
be proven by going through the table-filling algorithm and showing that all the shown states 
are distinguishable. This would be a case for extra grading points.  
 
Exercise 4 (5 points). Is the class of regular languages closed under infinite union? 
 
Solution. Heaven, no!!!! Let L be a non-regular language (the pumping lemma has provided 
us with examples of non-regular langugages – and we also know that L must be infinite). 
Then L = � . But each {w} is a regular language, so the regular languages cannot be 

closed under infinite union.  
Lw

w
∈

}{

 
Exercise 5 (15 points) Minimize the DFA shown in the figure by using the table filling 
method. Deliverables: the filling table, the set of states of the minimal DFA, and a graph 
representation of the minimal DFA.   
 
 

1 

0,1 
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e 
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0,1  
 
 
Solution. Manual labour by accurate following of the recipe... 
 
 
Table:      Minimal DFA: 

 

b 

c 

d 

e 

f 

x1 

x1 

x2 x1 

x1 x2 
x2 x1 

x1 x2 

x1 

x1 
x1 

 

1 

1 1 

0 

Start 
0

0 

df 

b 

ce 

a 
 
 
 
 
 

a    b   c    d    e     0,1 
 
New states: {a}, {b}, {c,d}, {e,f} 
 
 
 
Exercise 6 (a, 10 points) Describe a general method by which one may transform any DFA A 
into an equivalent ε-NFA that has only a single accepting state. (b, 10 points) Transform your 
result minimal DFA from exercise 1 into a single-accepting-state ε-NFA, either using the 
general method you described in part (a) or by using insight.  
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Solution (a) First transform A into an equivalent regexp, then transform that into an 
equivalent  ε-NFA using the method from the proof of proposition 3.4 from the script – which 
yields an ε-NFA with only one accepting state. (b) By insight: add an ε to the transition from 
state a to state ce in the minimal DFA shown in the solution of exercise 1. Then make state a 
non-accepting. The resulting ε-NFA clearly accepts the same language.  
 
 
Exercise 7 (30 points). Consider a minimal DFA A that works on an alphabet Σ. Assume that 
you are told that it has m states, but you know nothing more about A – it is a "black box" and 
your only way of getting information about A is to feed in words and observe whether they are 
accepted. Give an algorithm for determining the transition diagram of A from (any finite 
number of) such observations. One extremely expensive method would be to first construct all 
possible minimal DFAs of size m, [a HUGE number of DFAs this would give you!] then start 
testing all words from Σ* in alphabetical enumeration, weeding out all DFAs that on some 
word behave different from your black box. Then at some point only one of your DFAs is left, 
--> problem solved. Don't do it this way, but reconstruct RL from the Myhill-Nerode theorem 
– that gives a much faster reconstruction. 
 
One possible solution. We know that RL has m classes. First observe that in order to check 
whether for any words u,v it holds that uRLv, one only has to check whether uw ∈  L(A) ⇔ vw 
∈  L(A) for all words w of length ≤ m (two words u,v are not equivalent iff they can be 
distinguished by a word w of length ≤ m, that is, uw ∈  L(A) but vw ∉  L(A) or vice versa – this 
is the idea of the table-filling algorithm). So it is possible to determine whether uRLv by at 
most Σm many checks. 
 
We next procure representatives r1, ..., rm of the RL-equivalence classes, such that we may 
write them as [r1],..., [rm]. We may assume that these representatives have length at most m. 
Choose r1, ..., rm among all words u,v of length ≤ m such that the chosen ri are pairwise not 
equivalent. Without loss of generality choose r1 = ε. 
 
Identify the states of the DFA you are about to reconstruct with [r1],..., [rm]. Assign [r1] = [ε] 
to be the starting state, according to the construction in the proof of the Myhill-Nerode 
proposition, and choose as accepting states all [ri] where ri ∈ L(A). Finish your construction 
by putting  
 

for i = 1,...,m, a ∈  Σ: δ([ ri], a) = [ri a] = [ rj], 
 
where you use the method to decide uRLv to find out to which representative rj the word ri a is 
equivalent. 
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Exercises for ACS 1, Fall 2004, sheet 3: Solutions 
 
 
Exercise 1. (10 points) Give a CFG for all words over the terminal alphabet T = {a, b, +, 
*,(,),ε, ∅ } that are regular expressions over Σ = {a, b}. 
 
Solution. Put V = {E}  (which automatically makes E the start variable). Then simply 
replicate the inductive definition of regexps: 
 
E → a | b | ε | ∅  | (EE) | (E+E) | (E*) 
 
Exercise 2. (a, 10 points) Give a CFG for the language L = {w ∈   {a, b}* | w = anb2n for 
some n > 0}. (b, 20 points) Prove with a proof similar to the one from example 4.5. in the 
lecture notes that your grammar really generates the language L.  
 
Solution. (a) Put V = {S, R}, then the following grammar G does the trick: 
S → aRbb  
R →  ε | aRbb 
 
(b) We show that w = anb2n iff w ∈  L(G).  
" � " Let w = anb2n. We show w ∈  L(G) by induction on n. Basis: n = 1: w = abb is in L(G) 
because S � aRbb �  a ε bb  = abb. Induction: Let anb2n ∈  L(G). We show that 
an+1b2(n+1) ∈  L(G). There must be a derivation for anb2n , which must start with S � aRbb, 
and be continued by R � * an-1b2(n-1). If we replace the first derivation S � aRbb by S � 
aRbb  � aaRbbbb, and continue to replace R by an-1b2(n-1), we end up with an+1b2(n+1). 
 
" ⇐ " Let w ∈  L(G), and let w have a derivation of length n. We show by induction on n that 
w = an-1b2(n-1) . Basis: The shortest possible derivation has length n = 2 and is S � aRbb �  
a ε bb, which yields a word of the required form. Induction: Let w have a derivation of length 
n+1, where n ≥ 2. The derivation of w must have the form S � aRbb � aaRbbbb �... � w = 
aaγbbbb, where γ is a word of terminals derived from R in n-1 steps. This implies S � 
aRbb �... � aγbb in n steps. By induction hypothesis, aγbb = an-1b2(n-1) , that is,                    
γ = an-2b2(n-2). Therefore, aaγbbbb = anb2n. 
 
Exercise 3. (a, 15 points) Give a CFG for the language L over the the terminals T = {a, b} 
whose words contain exactly twice as many b's as a's. (b, 20 points) Prove that your grammar 
actually generates exactly the words from L.  
 
Solution. (a) The following grammar G does it: 
 
S → ε | SaSbSbS | SbSaSbS| SbSbSaS 
 
(b) (sketch) It is obvious that G generates only words whith twice as many b's as a's. To show 
that every such word w can be generated by G, we proceed by induction on the length of w. If 
|w| = 0 or |w| = 3, it is clear that w can be generated by G. If w has length 3n greater than 3, 
observe that w must contain at least one subword v of the form abb or bab or bba (because 
otherwise all subwords of length 3 would contain more a's than b's, which would make it 
impossible for w to contain more b's than a's.) Replace this subword within w by ε, to obtain a 
word w' = w''εw''' of length 3(n-1), which can be generated by G by induction hypothesis, and 
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where the ε marks the place where the subword has been cut out. Conclude by arguing that 
the parse tree of w' must have had a final branch S → ε to obtain the highlighted ε. This 
branch can be replaced by a derivation of v.  
 
Exercise 4. The grammar E → E+E | E*E | (E) | id  generates the arithmetic expressions with 
+, *, parentheses and id. The grammar is ambiguous because id + id * id has two different 
parse trees. (a, 5 points) Construct an equivalent unambiguous grammar. (b, 25 points) 
Construct an unambiguous grammar for all arithmetic expressions with no redundant 
parentheses. A pair of parentheses is redundant if its removal does not algebraically change 
the expression, e.g., the parentheses are redundant in id + (id * id) or id * (id) but not in (id + 
id) * id. Explain the idea behind your grammar in words. Give derivations for (id + id) * id 
and id * (id + id). 
 
Solution. (a) We follow closely the recipe from Example 4.3. in the lecture notes: 
 

E → T | E + T 
T → F | T * F 
F → id | (E) 

 
(b)  

E → T | E + T (1) 
E' → E + T  (2) 
T → id | T' * F (3) 
T' → F | T' * F (4) 
F → id | (E')  (5) 

 
Explanation: Parentheses can be redundant for three reasons: (i) they embrace a product or an 
atomic id, or (ii) they embrace the entire expression, or (iii) they embrace a sum that is not 
preceded or followed by a *. Our grammar precludes all three possibilities: (i) parentheses can 
only be introduced with rule (5), which leads to rule (2), which enforces a + inside 
parentheses. (ii): Parentheses can only be introduced by rule (5), which needs a prior 
derivation of F, which can only be introduced together with a * by (3) or via T', which itself 
comes with a * in (3). (iii): same argument as for (ii); ensures that a * must come before or 
after parentheses.  
 
Derivation of (id + id) * id: E � T � T' * F � F * F �* (E') * id �* (id + id) * id 
Derivation of id * (id + id): E � T � T' * F � F * F �* id * (E') �* id * (id + id) 
 
Exercise 5. (15 points) Design a PDA for the language L of words over the terminal alphabet 
T = {(,)} that belong to the language of the grammar S → S S | (S) | ε. (This is the language of 
all "balanced parenthesis" words). The PDA should accept by going into an accepting state. 
Specify your PDA by its transition function, and describe the principles behind your design in 
intuitive terms.  
 
Solution. Intuitive description: the PDA may, at any time and regardless of top stack symbol, 
read in an opening "(" and memorizes the opening by pushing one ")" on the stack. It may 
read in a ")" only if an ")" is the top stack symbol, which is then deleted. When the bottom 
stack symbol Z0 is seen, the PDA may enter an accepting state with ε input.  
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The state set is {q,p}, where q is the start state and p the accepting state. The stack symbols 
are {Z0, )}. Here is the transition function: 
 
δ(q, ε, Z0) = {(p, Z0)} 
δ(q, (, #) = {(q, )#)}  for any stack symbol # 
δ(q, ), )) = {(q, ε)} 
 
 
 
 
Exercises for ACS 1, Fall 2004, sheet 4: Solutions 
 
Return solutions in paper form on Friday Nov. 12, in the lecture 
 
Note: a maximum of 100 points is accredited for this sheet.  
 
 
Exercise 1. (20 points) Give a PDA to accept L = {0n1m2k | n, m, k ≥ 1 and (n ≠ m or m ≠ k)} 
by accepting state. Describe the idea behind your PDA in words and specify its transition 
function. 
 
Solution (partial). L is the union of L1 = {0n1m2k | n, m, k ≥ 1 and n ≠ m} with L2 = {0n1m2k | 
n, m, k ≥ 1 and m ≠ k }. If we have PDAs P1 and P2 for L1 and L2, where the state and stack 
symbol sets of P1 and P2 are disjoint and have start states q1 and q2 and top stack symbols Z1 
and Z2,  we can combine them into a single PDA P for L by joining all states and rules, 
declaring some new state q0 and new top stack symbol Z as start state for P and add the 
transition rule δ(q0, ε, Z) = {(q1, Z1), (q2, Z2)}. Then P initially takes a random choice 
between P1 and P2, after which it carries out a run of the chosen PDA. Obviously P accepts L.  
 
It remains to provide PDAs for L1 and L2. Here I only describe the first case. Idea: The PDA 
for L1 always ends dead when the input is not of the form 0n1m2k, where n, m, k ≥ 1. This can 
be achieved by ensuring that the set S0 of states that are entered after reading 0 are disjoint 
from the set S1 of states that are entered after reading 1, and again both sets are disjoint from 
the 2-reachable states S2. Furthermore, states from S1 can only be reached from states of S0 or 
S1, and states from S2 only from S1 or S2 states. Accepting states are all in S2. To check the 
conditions n ≠ m, the PDA first memorizes the number of read 0's by copying them on the 
stack. When it starts reading 1's, it cancels 0's from the stack until one of the following 
occurs: 
 

(i) It reads a 1 but the stack has no more 0's. Then n ≠ m. The PDA enters a mode 
where it only checks whether the rest of the word is of form 1m'2k, where m' ≥ 0, k 
≥ 1. 

(ii) It reads the first 2 but the stack still has 0's. Then again n ≠ m. The PDA enters a 
mode where it only checks whether the rest of the word is of form 2k', where k' 
≥ 0.  

(iii) It reads the first 2 exactly after it has deleted the last 0 from the stack. Then n = m 
and the PDA is halted in a dead end.  
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Here is a list of the required transitions. The stack top symbol is Z1, and the start state is q1. 
The single accepting state is qaccept.  
 

1. δ(q1, 0, Z1) = {(q1, 0Z1)}   
2. δ(q1, 0, 0) = {(q1, 00)} 
3. δ(q1, 1, 0) = {(q2, ε)}   ; entering the downcounting of 0's 
4. δ(q2, 1, 0) = {(q2, ε)} 
5. δ(q2, 1, Z1) = {(q3, Z1)} ; entering mode (i) 
6. δ(q3, 1, Z1) = {(q3, Z1)} ; continue reading 1's 
7. δ(q3, 2, Z1) = {(qaccept, Z1)} 
8. δ(qaccept, 2, #) = {(qaccept, #)} ; # is any stack symbol 
9. δ(q2, 2, 0) = {(qaccept, ε)} ; entering mode (ii) 
10. δ(q2, 2, Z1) = {}  ; case (iii) 

 
Exercise 2 (20 points) The PDAs that we use (and everybody else) have a single stack 
memory. One might wish to increase the power of PDAs by adding more such memories. 
Give a formal definition of an "n-stack PDA", its configurations, and the languages accepted 
by them (by final state). Follow the definitions 4.9 – 4.12 of the lecture notes. Your definition 
should be so general as to include the special cases where n = 0 (and then your definition 
should be equivalent to an NFA); for n = 1 your n-stack PDA should be equivalent to our 
familiar PDAs. Note: there isn't a unique "correct" such definition. n-stack PDAs can be 
defined in various ways, not necessarily equivalent. The purpose of this exercise is that you 
train writing clean definitions, not to find the "correct" definition. Hint: to cover the case n = 0 
without any extra case distinctions, you may use the convention that for any set X, X0 is {∅ }.  
 
Solution.  (1) (one possible definition of n-stack PDAs) Let n ≥ 0. An n-stack PDA is a 7-
tuple P = (Q, Σ, Γ, δ, q0, Z0, F), where  
 

• Q is a finite set of states, 
• Σ is a finite set of input symbols, 
• Γ is a finite stack alphabet,  
• δ: Q × (Σ ∪  {ε}) × Γn → Pot0(Q × (Γ*)n) is the transition function,  
• q0 ∈  Q is the start state, 
• Z0 ∈ Γ  is the start stack symbol, 
• F ⊆  Q is the set of accepting states. 

 
(2) (configuration) A configuration of an n-stack PDA  (Q, Σ, Γ, δ, q0, Z0, F) is triple (q, w, 
γ), where  
 

• q ∈  Q is the current state of the PDA,  
• w ∈  Σ* is the remaining input word, 
• γ ∈  (Γ*) n is the n-tuple of current stack contents (i-th word of γ = i-th stack). 

 
(3) (move) ) For an n-stack PDA P = (Q, Σ, Γ, δ, q0, Z0, F), all q, q' ∈  Q,  a ∈ Σ  ∪  {ε}, w ∈  
Σ*, (X1,..., Xn) ∈ Γ  n, and (α1,..., αn), (β1,..., βn) ∈ (Γ*) n define  
 
 (q, aw, (X1 β1,..., Xn βn)) �P (q', w, (α1 β1,..., αn βn)) iff  

 10



(q', (α1,..., αn)) ∈  δ(q, a, (X1,..., Xn)).  
 
As usual, define by  �P* the transitive-reflexive closure of �P (that is, zero or any number of 
moves). 
 
(4) (languages accepted by final state) Let P =  (Q, Σ, Γ, δ, q0, Z0, F) be an n-state PDA. Then 
the language accepted by P by final state is 
 
L(P) = {w ∈  Σ* | (q0, w, (Z0,..., Z0)) �P* (q, ε, (α1,..., αn)), where q ∈  F and (α1,..., αn) 
∈ (Γ*)n }. 
 
Exercise 3. (20 points) Show that the language L = {0n1n2n | n ≥ 1 } can be accepted by a 2-
stack PDA, by specifying the transition function and explaining the working principle in 
words. Note: this language is not a CFL (can be shown via the CFL pumping lemma). Thus, 
introducing 2-stack PDAs properly extends the class of recognizable languages.  
 
Solution. Idea: while reading 0's, the first stack is filled with 0's to count them. When reading 
1's, the first stack is successively emptied in order to check that there are as many 1's as 0's; at 
the same time, the second stack is filled with 1's. Finally, when reading 2's, their number is 
checked using the 1's from the second stack. The stack alphabet is Γ = {Z0, 0,1}; q3 is the only 
accepting state. Here is a possible transition function:  
 

δ(q0, 0, (X, Y)) = {(q0, (0X, Y), (q1, (0X, Y))}  for any X, Y ∈  Γ; 
δ(q1, 1, (1, Y)) = {(q1, (ε, 1Y))}   for any Y ∈  Γ; 
δ(q1, 2, (Z0, 1)) = {(q2, (Z0, ε))}  
δ(q2, ε, (Z0, Z0)) = {(q3, (Z0, Z0))} 

 
 
Exercise 4 (30 points) Convert the following grammar G = (V, T, P, S) into CNF, by (i) 
eliminating ε-productions, (ii) eliminating unit productions, (iii) eliminating useless symbols, 
(iv) putting the resulting grammar in CNF. Each of the steps (i) to (iv) counts 10 points.  
 

S → 0A0 | 1B1 | AB 
A → C 
B → S | A 
C → S | ε 

 
 
Solution: (i) a. Finding nullable variables: NULL(1) = {C}, NULL(2) = {C, A}, NULL(3) = 
{C, A, B}, NULL(4) = NULL(5) = {C, A, B, S}. b. For S → 0A0 add {S → 0A0, S → 00} to 
P', for S → 1B1 add {S → 1B1, S → 11} to P', for S → AB add {S → AB, S → B, S → A } to 
P', for A → C add { A → C } to P', for the remaining rules add {B → S, B → A, C → S} to P'. 
This gives a new set P'  
 

S → 0A0 | 00 | 1B1 | 11 | AB | B | A 
A → C 
B → S | A 
C → S  
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(ii) a. Finding unit pairs: PAIRS(1) = {(A, A), (B, B), (C, C), (S, S)}, PAIRS(2) = {(A, A), (B, 
B), (C, C), (S, S), (S, B), (S, A), (A, C), (B, S), (B, A), (C, S)}, PAIRS(3) = {(A, A), (B, B), (C, 
C), (S, S), (S, B), (S, A), (A, C), (B, S), (B, A), (C, S),  (S, C), (A, S), (B, C), (C, A), (C, B)},  
PAIRS(4) = PAIRS(5) = {(A, A), (B, B), (C, C), (S, S), (S, B), (A, C), (B, S), (B, A), (C, S), (S, 
A), (A, S), (B, C), (C, B), (S, C), (A, B), (C, A)}. An easier way to see that here all pairs are 
unit pairs is to check the following directed graph created by the unit transitions from P' and 
see that it is cyclic, that is, every node is transitively reachable from every other node: 
 
 
 
   S A 
 
 
   B C 
 

S → 0A0 | 00 | 1B1 | 11 | AB | B | A 
A → C 
B → S | A 
C → S  

 
 
b. Stripping from P' all unit productions and then adding all productions of the form A → α, 
where B → α is a non-unit production in P' and (A, B) is a unit pair, yields P'' = 
 

S → 0A0 | 00 | 1B1 | 11 | AB 
A → 0A0 | 00 | 1B1 | 11 | AB 
B → 0A0 | 00 | 1B1 | 11 | AB 
C → 0A0 | 00 | 1B1 | 11 | AB 

 
(iii) a. We first detect all generating symbols. GEN(1) = {0,1}, GEN(2) = GEN(3) = {0, 1, A, 
B, C, S}.  
 
b. Deleting from G all nongenerating symbols and productions in which such symbols occur, 
yields G2 = (V, T, P'', S), because there are no non-generating symbols or productions. 
 
c. Next we find all reachable symbols of G2. The graph described in the lecture notes is 
 

 S A 
 
B   C 
 
 0 1 

 
 
 
 
 
 
From this we see that the reachable symbols are {0, 1, S, A, B}. 
 
d. Finally we eliminate from G2 all non-reachable symbols and productions in which such 
symbols occur, to obtain G1 = ({S, A, B }, {0, 1}, P''', S), where P''' = 
 

S → 0A0 | 00 | 1B1 | 11 | AB  
A → 0A0 | 00 | 1B1 | 11 | AB 
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B → 0A0 | 00 | 1B1 | 11 | AB 
 
(iv) In the last step, we obtain a CNF grammar by carrying out the two steps given in the 
proof of theorem 4.10 in the lecture notes. 
 
a. Arrange that all bodies of lenght 2 or more consists only of variables. This gives us 
productions P'''' = 
 

S → A0AA0 | A0A0 | A1BA1 | A1A1 | AB  
A → A0AA0 | A0A0 | A1BA1 | A1A1 | AB 
B → A0AA0 | A0A0 | A1BA1 | A1A1 | AB 
A0 → 0 
A1 → 1 

 
b. Break productions with all-variable bodies of length 3 or more into sequences of 
productions of the form A → BC. This gives us the final rule set PCNF =  
 

S → A0A' | A0A0 | A1B' | A1A1 | AB 
A → A0A' | A0A0 | A1B' | A1A1 | AB 
B → A0A' | A0A0 | A1B' | A1A1 | AB 
A'→ AA0 

B'→ BA1 

A0 → 0 
A1 → 1 

 

Exercise 5. (30 points) Write an unrestricted grammar for L = {0(2n) | n > 0}, and explain in 
words how it functions.  
 
Solution. This is a classic. Here I copy the solution from an old edition of the HMU book 
(then only a HU book). Here's the grammar: 
 

1. S → AC0B 
2. C0 → 00C 
3. CB → DB 
4. CB →  E 
5. 0D → D0 
6. AD → AC 
7. 0E → E0 
8. AE → ε 

 
And here is how it works. The idea is that A and B serve as end markers for strings of 0's 
which are iteratively doubled in length by a "cursor" C that moves through the strings of 0's 
between A and B, doubling their number by production 2. When C hits the right end marker B, 
it becomes a D or E by productions 3 or 4. If a D is chosen, it migrates left by production 5 
until the left endmarker A is reached. At that point D becomes a C again by production 6 and 
the process starts again. If an E is chosen, the right end marker is consumed (in 4.) and the E 
wanders left by production 7 until it hits the left endmarker, which is consumed along with E 

in production 8. By that time, a word of the desired form 0(2n)  is left. 
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Exercises for ACS 1, Fall 2004, sheet 5 – Solution sheet 
 
Return solutions in paper form on Wednesday Nov. 24, in the lecture 
 
Note: a maximum of 100 points is accredited for this sheet.  
 
 
Exercise 1. (30 points) Give FOL propositions that formally state the following natural-
language sentences about personal relationships. Provide a symbol set S that you use for all 
the sentences, and declare what type each symbol is (constant, predicate/relation, function; 
also state arity). Use the exact FOL syntax as introduced in class. 
 

a. Scott is the author of Waverley. 
b. Waverley is a famous classical English novel. 
c. A novel is a novel. 
d. A novel is a special type of written art. 
e. If I am the author of Waverley, and the author of Waverley is Scott, then I am Scott. 
f. I like Waverly better than any other novel. 
g. There exist at least two men by the name of "Scott". 

 
Which of your propositions are tautologies, which are contradictions? 
 
Solution. (not unique - - there are always many ways to formalize natural language 
statements) Symbol set: constants Scott_The_Author, Waverley, I, Scott_Name; unary 
predicate symbols: Famous, Classical, English, Novel, Written_Art; ternary relation 
symbols: Who_Likes_What_Better_Than; unary function symbols: Author_of, Name_of. 
 

a. Author_of Waverley = Scott_The_Author 
b. Famous Waverley ∧  Classical Waverley ∧ English Waverley ∧  Novel Waverley   
c. ∀ x1 (Novel x1 → Novel x1) 
d. ∀ x1 (Novel x1 → Written_Art x1) 
e. (I = Author_of Waverley ∧  Scott = Author_of Waverley → I = Scott) 
f. ∀ x1 (Novel x1 ∧ ¬  x1 = Waverley → Who_Likes_What_Better_Than I x1 

Waverley) 
g. ∃  x1 ∃  x2(¬ x1 = x2  ∧ (Name_of x1 = Scott_Name ∧ (Name_of x2 = Scott_Name)) 

 
c and e are tautologies, none is a contradiction. 
 
Exercise 2 (20 points) For your symbol set S of the previous exercise, describe an S-structure 
in which all the statements of Exercise 1 hold. 
 
Solution. Put A = {Scott, Waverley, I, Scott-the-name }; this set contains two 
persons, a novel, and a name. Put FamousA = Classical A = NovelA = EnglishA = 
Written_ArtA =  {Waverley}, Who_Likes_What_Better_ThanA = ∅ , Author_ofA = 
{(Waverley, Scott)}, Name_ofA = {(Scott, Scott-the-name)}. 
 
Exercise 3 (20 points) Let S = {<}, where < is a binary relation symbol. Characterize in 
words the class of all S-structures � which are models of  
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ϕ = ∀ x1∀ x2∀ x3(((((¬ x1 = x2  ∧ ¬  x2 = x3) ∧ ¬  x1 = x3) ∧ < x1 x2) ∧ < x2 x3) → ¬  < x3 x1) 
 
and give two concrete S-structures, one of which is a model of ϕ and the other isn't. Present 
your structures (i) in an intuitive graph-like representation, (ii) formally as sets. How many 
non-isomorphic models does ϕ have? 
 
Solution. The models of ϕ are exactly those {<}-structures that contain no <-cycle of length 
3. The simplest S-structure that is a model of ϕ is given by a singleton set A and empty <, that 
is, A = {a} and < A = ∅  (graph-like representation: a single point). The simplest S-structure 
that is not a model of ϕ is an isolated 3-cycle of <, that is, A = {a, b, c} and < A = {(a,b), (b,c), 
(c,a)}: 
 

a 

c 

b 

< 

< 

< 
 
 
 
 
Exercise 4 (20 points) For S = {<} design a proposition ϕ such that any model of ϕ is 
isomorphic to the 3-cycle ��= (A, < A) = ({a, b, c}, {(a,b), (b,c), (c,a)}). Note: Questions of 
this kind – find propositions that characterize structures up to isomorphism – are 
quintessential in the analysis of mathematical axiom systems; an entire, highly active 
 field of logics called "model theory" is mainly concerned with questions of this kind.  
 
Solution: ϕ is the conjunction of a proposition ϕ1 that states that any model has exactly three 
elements, and of a proposition ϕ2 that states that there exist three elements that occur in a <-
cycle: 
 
ϕ1  =  ∃ x1∃ x2∃ x3(((¬ x1 = x2  ∧ ¬  x2 = x3) ∧ ¬  x1 = x3) ∧  ∀ x4((x4 = x1  ∨  x4 = x2) ∨  x4 = x3)) 
ϕ2  =  ∃ x1∃ x2∃ x3((((((((< x1 x2 ∧ < x2 x3) ∧ < x3 x1 ) ∧ ¬  < x1 x1 ) ∧ ¬  < x1 x3) ∧ ¬  < x2 x2 )  

∧ ¬  < x2 x1) ∧ ¬  < x3 x3) ∧ ¬  < x3 x2) 
 
Exercise 5  a. (20 points) Show that for any S and any S-expression ϕ, ∀ x ϕ � ¬  ∃  x ¬  ϕ.  
b. (20 points) Show that for a ternary relation symbol R,   ∀ x ∀ y ∃ z Rxzy � ∃ z ∀ x ∀ y Rxzy  
does not hold. 
 
Solution. a. . Let (�, β)���∀ x ϕ for some � with domain A. We have to show that  

(�, β)��� ¬  ∃  x ¬  ϕ. For all a ∈  A it holds that (�, β
x

a
) �  ϕ. That implies that for no a ∈  A 

it holds that not (�, β
x

a
) �  ϕ, that is, there exists no a ∈  A such that (�, β

x

a
) �   ¬  ϕ, that is, 

it does not hold that there exists some a ∈  A such that (�, β
x

a
) �   ¬ ϕ, that is, it does not 

hold that (�, β)���∃ x ¬  ϕ, that is, (�, β)��� ¬  ∃  x ¬  ϕ. 
 
b. We give a counterexample, that is, an {R}-structure (A, RA) where  
(A, RA) ��∀ x ∀ y ∃ z Rxzy but not (A, RA) � ∃ z ∀ x ∀ y Rxzy. There are many such 
counterexample structures. One is to take A = � and choose R� to be the relation R� = {(k,l,n) 
∈  �3 | k ≤ l ≤ n or k ≥ l ≥ n}, that is,   Rkln means that l lies between k and l. Then clearly 
(�,R��) ��∀ x ∀ y ∃ z Rxzy but not �(�,R��) ��∃ z ∀ x ∀ y Rxzy (because there exists no natural 
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number that lies between all possible choices of two natural numbers – for instance, 1 does 
not lie between 6 and 8.) 
 
 
 
 
Exercises for ACS 1, Fall 2004, sheet 6  
 
Return solutions in paper form on Friday Dec. 03, in the lecture 
 
Note: a maximum of 100 points is accredited for this sheet.  
 
Exercise 1. Here is a famous photo1:  

(a, 15 points) Imagine you would 
have to describe this picture to a 
blind friend in 5 sentences. Write 
these 5 sentences down in FOL. 
You don't have to specify the type 
and arity of your symbols; for 
simplicity and clarity, use 
"xyz_of" for function symbols; all 
other symbols are constants or 
relations.  
(b, 15 points) This photo invites 
aesthetic and philosophical 
thinking (take a look at the 
website it was taken from!). 
Think of one such "deep" thought 
and argue why it can't be 
formalized in FOL. 
(Alternatively, argue that all 
aesthetic and philosophical 
thoughts can be expressed in 
FOL). You think this is a strange exercise? 
Well, it has been tried to formalize legal 
reasoning in FOL, for juridical expert 
systems... and legal reasoning is "deep". 

 

   
 
No solution given, because possible solutions are extremely varied. 
 
Exercise 2. You know many facts that can easily be expressed in FOL. A base fact is a fact 
that is not logically entailed by other facts that you know. (a, 10 points) Give one example of 
a base fact from your personal knowledge and argue informally that it is a base fact. (b, 20 
points) Give an estimate of the number of base facts that you know, and explain the reasoning 
behind your estimate. [Background of this exercise: in Artificial Intelligence, knowledge 
bases for expert systems are essentially large collections of base facts from some specific 
domain of expertise] 
 
No solution given, because possible solutions are extremely varied. 
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Exercise 3. (20 points) Consider the following propositions which express that the binary 
relation R is an equivalence relation: 
 
ϕ1 = ∀ x Rxx  ϕ2 = ∀ x∀ y (Rxy → Ryx)  ϕ3 = ∀ x∀ y∀ z ((Rxy ∧  Ryz) → Rxz) 
 
Show that none of these propositions is entailed by the others by presenting {R}-structures 
that are models of two of the propositions, but not of the third.  
 
Solution. Here is one possibility.  
(i) A model of ϕ2 and ϕ3 but not of ϕ1:  � = ({1}, ∅ ) 
(ii) A model of ϕ1 and ϕ3 but not of ϕ2:  � = ({1,2}, {{1,1},{1,2},{2,2}}) 
(iii) A model of ϕ1 and ϕ2 but not of ϕ3:   

� = ({1,2,3}, {{1,1},{2,2},{3,3},{1,2},{2,1},{2,3},{3,2}}) 
 
Exercise 4. (30 points) A DFA can be seen as a structure � = (A, SA, QA, FA, δA, q0

A), where 
the carrier A consists of the states and symbols, S is a unary predicate (intention: S denotes the 
symbols), Q is a unary predicate (denoting the statesF is a unary predicate (denoting the 
accepting states), ), δ is a binary function (denoting the transition function), and q0 is a 
constant symbol (denoting the start state). Give a collection Φ of FOL propositions such that 
every finite S-structure � is a model of Φ iff � corresponds to a DFA. In other works, 
axiomatize the DFAs in FOL. Explain each of your propositons in words. 
 
Solution. Here is one possibility: 
 
∀ x ((Sx ∨  Qx) ∧  ¬  (Sx ∧  Qx))  every thing must be either a state or a symbol 
(∃ x Sx ∧ ∃ x Qx)    state and symbol sets are not empty 
Qq0      the start state is actually a state 
∀ x (Fx → Qx)     the accepting states are actually states 
∀ x∀ y∀ z (((Qx ∧  Sy)  ∧  δxy = z ) → Qz) δ maps state-symbol pairs on states 
 
Note: because in FOL we only know total functions, in any S-structure � the function δA is 
totally defined. For the purposes of interpreting � as a DFA, it is not relevant which type of 
values δA has on argument pairs that are not of type (state, symbol).  
 
Exercise 5. (10 points each) Give a rigorous derivation of the following sequence rules: 
 
      Γ ϕ ¬  ϕ   Γ ϕ ¬  ψ 
a. (ϕ ∨  ¬  ϕ)  b.  Γ    ¬  ϕ  c. Γ ψ ¬  ϕ 
 
in the sequence calculus! (Notes: b.  is the easiest. The sequence a. has empty antecedent Γ = 
∅ ). 
 
Solution:  a. 
 
1.  ϕ         ϕ   (Pre) 
2.  ϕ (ϕ ∨  ¬  ϕ)  (∨  Con a.) on 1. 
3. ¬  ϕ    ¬  ϕ   (Pre) 
4.  ¬  ϕ     (ϕ ∨  ¬  ϕ)  (∨  Con b.) on 3. 
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5.  (ϕ ∨  ¬  ϕ)  (Cas) on 2. and 4. 
 
b. 
 
1. Γ ϕ      ¬ϕ   (premise) 
2. Γ ¬ϕ     ¬ϕ    (Pre) 
3. Γ        ¬  ϕ   (Cas) on 1. and 2. 
 
c. 
 
1.  Γ ϕ       ¬  ψ   (Premise) 
2. Γ ψ   ϕ      ψ   (Pre)  
3. Γ ψ   ϕ  ¬  ψ   (Ant) on 1. 
4. Γ ψ   ϕ  ¬  ϕ   (Con) on 2. and 3. 
5. Γ ψ   ¬ ϕ  ¬  ϕ   (Pre) 
6. Γ ψ   ¬  ϕ   (Cas) on 4. and 5. 

 
 
 
______________________________________________________________________ 
 
 
 
Advanced Computer Science 1    Group A 
Midterm, October 13, 2004 
 
Solution sheet 
 
 

1. (15 points) Design a DFA that accepts L = {w ∈  {0,1}* | w = 00(13n) for some n ≥ 0}. 
Present your DFA by a transition diagram.  

Solution.  

1 

1 

1 
0 0 start  

 

 

(all transitions that remain are not shown, they lead to dead state, likewise not shown) 

2. (5 points) Give a regexp for the language from problem 1. 

Solution. 00(111)* 

3. (20 points) Show that the language L = {0n12n23n ∈  {0,1,2}* | n ≥ 0} is not regular.  

Solution. Pumping lemma! Assume L is regular with pumping constant k. Consider w = 
0k12k23k ∈ L. By PL, w = xyz, with |xy| ≤ k, |y| > 0. Because |xy| ≤ k, y must consist entirely 
of 0's. By PL, then also 0k-|y|12k23k ∈ L, a contradiction. 

4. (20 points) Show that if L ⊆  {0,1}* is regular, then also L' = {w ∈  L | |w| ≤ 1 or the 
second symbol of w is 1} is regular. 
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Solution. L' = L ∩ L1 ∩ L2, with L1 = {w ∈  {0,1}*  | |w| ≤ 1} and L2 = {w ∈  {0,1}*  | |w| 
> 1 and the second symbol of w is 1}. L1 is finite and thereby regular. L2 can clearly be 
represented by the regexp (0+1)1(0+1)* and is thus also regular. Thus L' is the 
intersection of three regular languages and thereby regular. 

5. (10 points) Give a CFG for the language from problem 1. 

Solution. One possibility is S → 00T, T → 111T | ε.  

6. (30 points) Consider the toy shown in the figure below. A marble or a marshmallow can 
be dropped in at A. At the junctions there are levers x1, x2 which guide the dropped object 
to the left or to the right. When a (heavy) marble passes a lever, it flips direction after the 
object has passed, while a (leight) marshmallow doesn't affect the lever. Initially the levers 
are directed as in the figure. Denote a marble into A as input 0 and a marshmallow as input 
1. A winning sequence of inputs is one where the last object dropped in comes out at C. 
Model this toy by a DFA that accepts the language of all winning 0/1-sequences. Specify 
your DFA by a transition table.  
 
 

 
 

 

x2 

x1 

D C B 

A   
 
 
 
 
 
 
 
 
 
 
 
 
Solution. The important idea is to code DFA states by the possible flipstates of the two levers. 
Let ll code the situation where both levers direct objects to the left (as in the figure), lr code 
the situation where the first lever points left and the second right, and rl and rr accordingly. 
Furthermore, we must also code whether the previous input came out at C: we write, for 
instance, ll+ for a toy state where currently both levers point left and the previous drop ended 
in C, an ll- if it came out elsewhere. ll- is also the start state. Here is the transition table: 
 
state  input 0 input 1  
ll- rr-  ll-   
ll+ rr-  ll-  ; inaccessible from start state, superfluous 
lr- rl+  lr+   
lr+ rl+  lr+   
rl- ll-  rl-   
rl+ ll-  rl- 
rr- lr-  rr- 
rr+ lr-  rr-  ; inaccessible from start state, superfluous 
 

 19



Among these states, only ll- rr- lr- rl+ rl- lr+ are accessible from the start state, the remaining 
two states are superfluous. The "+"-states are the accepting states.   
 
 
______________________________________________________________________ 
 
 
 
Advanced Computer Science 1    Group A 

Solutions Final, December 14, 2004 
 
Note: points per problem reflect  
expected difficulty.  
 
 

Problem 1. Show that the language L = {0n ∈  {0}* | n is not of the form n = aa for some 
integer a} is not regular.  

 
Solution. Assume L is regular. Then Lc = {0n ∈  {0}* | n = aa for some integer a} is also 
regular, because the regular languages are closed under complement. Let m be a pumping 

lemma constant for Lc. Then 0mm
 ∈  L. The P.L. implies that also 0m  +km

 ∈  L, where 1 ≤ k ≤ m. 

But mm+k is not of the form aa, bceause mm < mm+k < (m+1)(m+1), so 0m +km

                                               

 ∉  Lc, a 
contradiction. Thus Lc is not regular and thereby neither is L.  Note: for group B, similarly use 
the PL on the complement language. 
 

Problem 2. Design an automaton (DFA, NFA or ε-NFA) A  over the alphabet {0,1} such that         
(i) L(A) ∩ {0,1}4 = {0101} and (ii) L(A) ∩ L((10)*) is infinite.  
 
Solution. The following DFA accepts only the word 0101 in its upper branch and the inifinite 
sublanguage L(101010(01)*) of L((10)*) in its lower. 
 
 
 

1 

0 
1 0 1 0 1 

1 0 1 0 
 
 
 
 
 
 
 
Problem 3. Give a CFG for the language of the regexp 101010(11)*. 
 
Solution. S → 101010 | 101010A,  A → 11 | 11A  does it.  
 
Problem 4. Let Σ be an alphabet. An ordered Σ-tree is a (possibly empty) finite ordered2 tree 
whose nodes are labelled by symbols from Σ. Let ΣT denote the set of all ordered Σ-trees. A 
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2 A tree is ordered if a linear ordering is declared for the childs of any node, that is, if they can be uniquely listed 
"from left to right".  



tree language3 over Σ is a subset of ΣT. Invent a generalization of context-free grammars that 
can describe tree languages and formally define the grammar and the tree language denoted 
by such a grammar. Demonstrate your definition by giving a concrete example of a tree 
grammar and a simple derivation of an ordered Σ-tree in that grammar. Note. The purpose of 
this problem is not to find "the correct" definition of tree grammars – you are free to invent 
what you find intuitive – but to demonstrate that you can distil intuitive concepts into formal 
definitions. 
 
Solution. Here is one possibility: 
 
Definition (tree grammars) A tree grammar is a quadruple G = (V, Σ, P, S), where V is a finite 
set of variables, Σ is a set of terminals, P is a finite set of rules of the form A → (α, a) where 
α ∈  (V + Σ)* and a ∈  Σ,  and S ∈  V is the start symbol. P must include at least one rule whose 
l.h.s. is S. V and Σ are disjoint.  
 
Definition. (derivations and tree languages). For a tree grammar G, define a binary relation 
 �G ⊆  (V + Σ)T × (V + Σ)T by t �G s  iff t has a leaf node n labelled with a variable A, 
and A → (α, a) ∈  P, such that s is the same tree as t except that the node n is re-labelled with 
a and has as many new child nodes (each a leaf in s) as the length of α, and these child nodes 
are labelled with the symbols from α, from left to right. Let �*G be the transitive closure of 
�G. If t �*G s, we say that s can be derived from t. We identify S with the single-node tree 
labelled by S and define the tree language of G by L(G) = {t ∈  ΣT | S �*G  t}. 
 
Example: Let V = {S}, Σ = {a, f}, P = {S → (SS, f), S → (ε, a)}. Then  
 
 f f 
 S    �G                     �*G              
 S a S a 
 
is a derivation of a Σ-tree in G. 
 
Problem 5. List all subformulas and terms that occur in  
 

((Qx ∨ ∃ x ∀ y (¬ Pffxa → Qa)) ∨ Rxxa),  
 

where Q is a unary predicate symbol, P is a binary predicate symbol, f is a unary function 
symbol, a is a constant symbol and R is a ternary predicate symbol. Determine for each 
occurrence of a variable whether it is free or bound. 
 
Solution. The terms that occur are a, x, y (arguably, not rigoroously covered by our 
definitions), fx, and ffx. The subexpressions are Qx, Pffxa, ¬ Pffxa, Qa, (¬ Pffxa → Qa), ∀ y 
(¬ Pffxa → Qa), ∃ x ∀ y (¬ Pffxa → Qa), (Qx ∨ ∃ x ∀ y (¬ Pffxa → Qa)), Rxxa, ((Qx ∨ ∃ x ∀ y 
(¬ Pffxa → Qa)) ∨ Rxxa). Free/bound occurrence, from left to right: x free, x bound [in Pffxa], 
x twice free [in Rxxa]. y does not occur at all according to our definition! 
 

                                                
3 Tree languages are an important field of theoretical computer science with many applications; the concept of 
tree languages used in that field is slightly more involved (it uses symbols with arity) than the simplistic concept 
used here. 
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Problem 6. Prove or disprove the following claims, where < is a binary relation symbol, f a 
unary function symbol and a a constant symbol (shorthand and infix notation is used): 
 
1.  { ∀ x y z ((x < y ∧  y < z) → x < z)} � ∃ x ∀ y x < y 
2. {∀ y fa < y } � ∃ x ∀ y x < y 
 
If you feel the need to describe an S-structure, explicitly present the carrier and the 
interpretation of the symbols as sets. If you feel the need to invoke derivation in the sequence 
calculus, rigorously follow the scheme from the lecture notes (as in the derivation of the chain 
rule). 
 
Solution. 1. is false. A simple counterexample is, for instance, the S-structure A = ({0}, <A, fA, 
aA) = ({0}, ∅ , {(0,0)}, 0). Clearly A ��∀ x y z ((x < y ∧  y < z) → x < z), because the antecedent 
of the implication is void, but likewise clearly not A ��∀ x ∃ y x < y. 
2. is true, as can be proven with our sequence calculus: 
 
1. ∀ y fa < y ∀ y fa < y  (Pre) 
2.  ∀ y fa < y  ∃ x ∀ y x < y  (∃ Con) applied on 1.  

(Note: ∀ y fa < y = ∀ y x < y 
x

fa
) 
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