
CPU Scheduling

• The scheduling problem:

- Have K jobs ready to run

- Have N ≥ 1 CPUs

- Which jobs to assign to which CPU(s)

• When do we make decision?
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CPU Scheduling

• Scheduling decisions may take place when a process:

1. Switches from running to waiting state

2. Switches from running to ready state

3. Switches from waiting to ready

4. Exits

• Non-preemptive schedules use 1 & 4 only

• Preemptive schedulers run at all four points
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Scheduling criteria

• Why do we care?

- What goals should we have for a scheduling algorithm?
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Scheduling criteria

• Why do we care?

- What goals should we have for a scheduling algorithm?

• Throughput – # of procs that complete per unit time

- Higher is better

• Turnaround time – time for each proc to complete

- Lower is better

• Response time – time from request to first response
(e.g., key press to character echo, not launch to exit)

- Lower is better

• Above criteria are affected by secondary criteria

- CPU utilization – keep the CPU as busy as possible

- Waiting time – time each proc waits in ready queue
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Example: FCFS Scheduling
• Run jobs in order that they arrive

- Called “First-come first-served” (FCFS)

- E.g.., Say P1 needs 24 sec, while P2 and P3 need 3.

- Say P2, P3 arrived immediately after P1, get:

• Dirt simple to implement—how good is it?

• Throughput: 3 jobs / 30 sec = 0.1 jobs/sec

• Turnaround Time: P1 : 24, P2 : 27, P3 : 30

- Average TT: (24 + 27 + 30)/3 = 27

• Can we do better?
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FCFS continued

• Suppose we scheduled P2, P3, then P1

- Would get:

• Throughput: 3 jobs / 30 sec = 0.1 jobs/sec

• Turnaround time: P1 : 30, P2 : 3, P3 : 6

- Average TT: (30 + 3 + 6)/3 = 13 – much less than 27

• Lesson: scheduling algorithm can reduce TT

- Minimize waiting time to minimize TT

• What about throughput?
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Bursts of computation & I/O

• Jobs contain I/O and computation

- Bursts of computation

- Then must wait for I/O

• To Maximize throughput

- Must maximize CPU utilization

- Also maximize I/O device utilization

• How to do?

- Overlap I/O & computation from

multiple jobs
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Histogram of CPU-burst times

• What does this mean for FCFS?
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FCFS Convoy effect
• CPU bound jobs will hold CPU until exit or I/O

(but I/O rare for CPU-bound thread)

- long periods where no I/O requests issued, and CPU held

- Result: poor I/O device utilization

• Example: one CPU-bound job, many I/O bound

- CPU bound runs (I/O devices idle)

- CPU bound blocks

- I/O bound job(s) run, quickly block on I/O

- CPU bound runs again

- I/O completes

- CPU bound still runs while I/O devices idle (continues?)

• Simple hack: run process whose I/O completed?

- What is a potential problem?
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SJF Scheduling

• Shortest-job first (SJF) attempts to minimize TT

• Two schemes:

- nonpreemptive – once CPU given to the process it cannot be

preempted until completes its CPU burst

- preemptive – if a new process arrives with CPU burst length less

than remaining time of current executing process, preempt

(Know as the Shortest-Remaining-Time-First or SRTF)

• What does SJF optimize?
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SJF Scheduling

• Shortest-job first (SJF) attempts to minimize TT

• Two schemes:

- nonpreemptive – once CPU given to the process it cannot be

preempted until completes its CPU burst

- preemptive – if a new process arrives with CPU burst length less

than remaining time of current executing process, preempt

(Know as the Shortest-Remaining-Time-First or SRTF)

• What does SJF optimize?

- gives minimum average waiting time for a given set of processes
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Examples
Process Arrival Time Burst Time

P1 0.0 7

P2 2.0 4

P3 4.0 1

P4 5.0 4

• Non-preemptive

• Preemptive

• Drawbacks?
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SJF limitations

• Doesn’t always minimize average turnaround time

- Only minimizes waiting time

- Example where turnaround time might be suboptimal?

• Can lead to unfairness or starvation

• In practice, can’t actually predict the future

• But can estimate CPU burst length based on past

- Exponentially weighted average a good idea

- tn actual length of proc’s nth CPU burst

- τn+1 estimated length of proc’s n + 1st

- Choose parameter α where 0 < α ≤ 1

- Let τn+1 = αtn + (1− α)τn
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Exp. weighted average example
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Round robin (RR) scheduling

• Solution to fairness and starvation

- Preempt job after some time slice or quantum

- When preempted, move to back of FIFO queue

- (Most systems do some flavor of this)

• Advantages:

- Fair allocation of CPU across jobs

- Low average waiting time when job lengths vary

- Good for responsiveness if small number or jobs

• Disadvantages?
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RR disadvantages

• Varying sized jobs are good. . .

• but what about same-sized jobs?

• Assume 2 jobs of time=100 each:

- What is average completion time?

- How does that compare to FCFS?
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Context switch costs
• What is the cost of a context switch?
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Context switch costs
• What is the cost of a context switch?

• Brute CPU time cost in kernel

- Save and restore resisters, etc.

- Switch address spaces (expensive instructions)

• Indirect costs: cache, buffer cache, & TLB misses
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Time quantum

• How to pick quantum?

- Want much larger than context switch cost

- But not so large system reverts to FCFS

• Typical values: 10–100 msec
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Turnaround time vs. quantum
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Two-level scheduling

• Switching to swapped out process very expensive

- Swapped out process has most pages on disk

- Will have to fault them all in while running

- One disk access costs 10ms. On 1GHz machine, 10ms = 10

million cycles!

• Context-switch-cost aware scheduling

- Run in core subset for “a while”

- Then move some between disk and memory

- How to pick subset? Hot to define “a while”?
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Priority scheduling

• A priority number (integer) is associated with each
process

- E.g., smaller priority number means higher priority

• Give CPU to the process with highest priority

- Can be done preemptively or non-preemptively

• Note SJF is a priority scheduling where priority is

the predicted next CPU burst time

• Starvation – low priority processes may never execute

• Solution?
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Priority scheduling

• A priority number (integer) is associated with each
process

- E.g., smaller priority number means higher priority

• Give CPU to the process with highest priority

- Can be done preemptively or non-preemptively

• Note SJF is a priority scheduling where priority is

the predicted next CPU burst time

• Starvation – low priority processes may never execute

• Solution?

- Aging - increase a process’s priority as it waits
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Multilevel feeedback queues (BSD)

• Every runnable proc. on one of 32 run queues

- Kernel runs proc. on highest-priority non-empty queue

- Round-robins among processes on same queue

• Process priorities dynamically computed

- Processes moved between queues to reflect priority changes

- If a proc. gets higher priority than running proc., run it

• Idea: Favor interactive jobs that use less CPU
– p. 20/31



Process priority

• p_ni
e – user-settable weighting factor

• p_est
pu – per-process estimated CPU usage

- Incremented whenever timer interrupt found proc. running

- Decayed every second while process runnable

p_estcpu←

(

2 · load

2 · load + 1

)

p_estcpu + p_nice

• Run queue determined by p_usrpri/4

p_usrpri← 50 +
(

p_estcpu

4

)

+ 2 · p_nice

(value clipped if over 127)
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Sleeping process increases priority

• p_est
pu not updated while asleep

- Instead p_slptime keeps count of sleep time

• When process becomes runnable

p_estcpu←

(

2 · load

2 · load + 1

)p_slptime
× p_estcpu

- Approximates decay ignoring nice and past loads
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Limitations of BSD scheduler

• Hard to have isolation / prevent interference

- Priorities are absolute

• Can’t transfer priority (e.g., to server on RPC)

• No flexible control

- E.g., In monte carlo simulations, error is 1/sqrt(N) after N trials

- Want to get quick estimate from new computation

- Leave a bunch running for a while to get more accurate results

• Multimedia applications

- Often fall back to degraded quality levels depending on

resources

- Want to control quality of different streams
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Real-time scheduling

• Two categories:

- Soft real time—miss deadline and CD will sound funny

- Hard real time—miss deadline and plane will crash

• System must handle periodic and aperiodic events

- E.g., procs A, B, C must be scheduled every 100, 200, 500 msec,

require 50, 30, 100 msec respectively

- Schedulable if
∑ CPU

period
≤ 1 (not counting switch time)

• Variety of scheduling strategies

- E.g., first deadline first (works if schedulable)
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Multiprocessor scheduling issues
• Must decide more than which process to run

- Must decide on which CPU to run it

• Moving between CPUs has costs

- More cache misses, depending on arch more TLB misses too

• Affinity scheduling—try to keep threads on same CPU

- But also prevent load imbalances

- Do cost-benefit analysis when deciding to migrate
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Multiprocessor scheduling (cont)
• Want related processes scheduled together

- Good if threads access same resources (e.g., cached files)

- Even more important if threads communicate often,

otherwise must context switch to communicate

• Gang scheduling—schedule all CPUs synchronously

- With synchronized quanta, easier to schedule related

processes/threads together
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Thread scheduling

• With thread library, have two scheduling decisions:

- Local Scheduling – Threads library decides which user thread to

put onto an available kernel thread

- Global Scheduling – Kernel decides which kernel thread to run

next

• Can expose to the user

- E.g., pthread_attr_sets
ope allows two choices

- PTHREAD_SCOPE_SYSTEM – thread scheduled like a process

(effectively one kernel thread bound to user thread)

- PTHREAD_SCOPE_PROCESS – thread scheduled within the current

process (may have multiple user threads multiplexed onto

kernel threads)
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Thread dependencies

• Priority inversion e.g., T1 at high priority, T2 at low

- T2 acquires lock L.

- Scene 1: T1 tries to acquire L, fails, spins. T2 never gets to run.

- Scene 2: T1 tries to acquire L, fails, blocks. T3 enters system at

medium priority. T2 never gets to run.

• Scheduling = deciding who should make progress

- Obvious: a thread’s importance should increase with the

importance of those that depend on it.

- Naïve priority schemes violate this

• “Priority donation”

- Thread’s priority scales w. priority of dependent threads
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Fair Queuing (FQ)
• Digression: packet scheduling problem

- Which network packet to send next over a link?

- Problem inspired some algorithms we will see next time

• For ideal fairness, would send one bit from each flow

- In weighted fair queuing (WFQ), more bits from some flows

Flow 1

Flow 2

Flow 3

Flow 4

Round-robin
service

• Complication: must send whole packets
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FQ Algorithm
• Suppose clock ticks each time a bit is transmitted

• Let Pi denote the length of packet i

• Let Si denote the time when start to transmit packet i

• Let Fi denote the time when finish transmitting

packet i

• Fi = Si + Pi

• When does router start transmitting packet i?

- If arrived before router finished packet i− 1 from this flow, then

immediately after last bit of i− 1 (Fi−1)

- If no current packets for this flow, then start transmitting when

arrives (call this Ai)

• Thus: Fi = max(Fi−1, Ai) + Pi
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FQ Algorithm (cont)

• For multiple flows

- Calculate Fi for each packet that arrives on each flow

- Treat all Fis as timestamps

- Next packet to transmit is one with lowest timestamp

• Not perfect: can’t preempt current packet

• Example:

Flow 1 Flow 2

(a) (b)

Output Output

F = 8 F = 10

F = 5

F = 10

F = 2

Flow 1
(arriving)

Flow 2
(transmitting)
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