
CPU Scheduling

• The scheduling problem:

- Have K jobs ready to run

- Have N ≥ 1 CPUs

- Which jobs to assign to which CPU(s)

• When do we make decision?

– p. 1/31



CPU Scheduling

• Scheduling decisions may take place when a process:

1. Switches from running to waiting state

2. Switches from running to ready state

3. Switches from waiting to ready

4. Exits

• Non-preemptive schedules use 1 & 4 only

• Preemptive schedulers run at all four points

– p. 2/31



Scheduling criteria

• Why do we care?

- What goals should we have for a scheduling algorithm?

– p. 3/31



Scheduling criteria

• Why do we care?

- What goals should we have for a scheduling algorithm?

• Throughput – # of procs that complete per unit time

- Higher is better

• Turnaround time – time for each proc to complete

- Lower is better

• Response time – time from request to first response
(e.g., key press to character echo, not launch to exit)

- Lower is better

• Above criteria are affected by secondary criteria

- CPU utilization – keep the CPU as busy as possible

- Waiting time – time each proc waits in ready queue

– p. 3/31



Example: FCFS Scheduling
• Run jobs in order that they arrive

- Called “First-come first-served” (FCFS)

- E.g.., Say P1 needs 24 sec, while P2 and P3 need 3.

- Say P2, P3 arrived immediately after P1, get:

• Dirt simple to implement—how good is it?

• Throughput: 3 jobs / 30 sec = 0.1 jobs/sec

• Turnaround Time: P1 : 24, P2 : 27, P3 : 30

- Average TT: (24 + 27 + 30)/3 = 27

• Can we do better?

– p. 4/31



FCFS continued

• Suppose we scheduled P2, P3, then P1

- Would get:

• Throughput: 3 jobs / 30 sec = 0.1 jobs/sec

• Turnaround time: P1 : 30, P2 : 3, P3 : 6

- Average TT: (30 + 3 + 6)/3 = 13 – much less than 27

• Lesson: scheduling algorithm can reduce TT

- Minimize waiting time to minimize TT

• What about throughput?

– p. 5/31



Bursts of computation & I/O

• Jobs contain I/O and computation

- Bursts of computation

- Then must wait for I/O

• To Maximize throughput

- Must maximize CPU utilization

- Also maximize I/O device utilization

• How to do?

- Overlap I/O & computation from

multiple jobs

– p. 6/31



Histogram of CPU-burst times

• What does this mean for FCFS?

– p. 7/31



FCFS Convoy effect
• CPU bound jobs will hold CPU until exit or I/O

(but I/O rare for CPU-bound thread)

- long periods where no I/O requests issued, and CPU held

- Result: poor I/O device utilization

• Example: one CPU-bound job, many I/O bound

- CPU bound runs (I/O devices idle)

- CPU bound blocks

- I/O bound job(s) run, quickly block on I/O

- CPU bound runs again

- I/O completes

- CPU bound still runs while I/O devices idle (continues?)

• Simple hack: run process whose I/O completed?

- What is a potential problem?

– p. 8/31



SJF Scheduling

• Shortest-job first (SJF) attempts to minimize TT

• Two schemes:

- nonpreemptive – once CPU given to the process it cannot be

preempted until completes its CPU burst

- preemptive – if a new process arrives with CPU burst length less

than remaining time of current executing process, preempt

(Know as the Shortest-Remaining-Time-First or SRTF)

• What does SJF optimize?

– p. 9/31



SJF Scheduling

• Shortest-job first (SJF) attempts to minimize TT

• Two schemes:

- nonpreemptive – once CPU given to the process it cannot be

preempted until completes its CPU burst

- preemptive – if a new process arrives with CPU burst length less

than remaining time of current executing process, preempt

(Know as the Shortest-Remaining-Time-First or SRTF)

• What does SJF optimize?

- gives minimum average waiting time for a given set of processes

– p. 9/31



Examples
Process Arrival Time Burst Time

P1 0.0 7

P2 2.0 4

P3 4.0 1

P4 5.0 4

• Non-preemptive

• Preemptive

• Drawbacks?

– p. 10/31



SJF limitations

• Doesn’t always minimize average turnaround time

- Only minimizes waiting time

- Example where turnaround time might be suboptimal?

• Can lead to unfairness or starvation

• In practice, can’t actually predict the future

• But can estimate CPU burst length based on past

- Exponentially weighted average a good idea

- tn actual length of proc’s nth CPU burst

- τn+1 estimated length of proc’s n + 1st

- Choose parameter α where 0 < α ≤ 1

- Let τn+1 = αtn + (1− α)τn

– p. 11/31



Exp. weighted average example

– p. 12/31



Round robin (RR) scheduling

• Solution to fairness and starvation

- Preempt job after some time slice or quantum

- When preempted, move to back of FIFO queue

- (Most systems do some flavor of this)

• Advantages:

- Fair allocation of CPU across jobs

- Low average waiting time when job lengths vary

- Good for responsiveness if small number or jobs

• Disadvantages?

– p. 13/31



RR disadvantages

• Varying sized jobs are good. . .

• but what about same-sized jobs?

• Assume 2 jobs of time=100 each:

- What is average completion time?

- How does that compare to FCFS?

– p. 14/31



Context switch costs
• What is the cost of a context switch?

– p. 15/31



Context switch costs
• What is the cost of a context switch?

• Brute CPU time cost in kernel

- Save and restore resisters, etc.

- Switch address spaces (expensive instructions)

• Indirect costs: cache, buffer cache, & TLB misses

– p. 15/31



Time quantum

• How to pick quantum?

- Want much larger than context switch cost

- But not so large system reverts to FCFS

• Typical values: 10–100 msec

– p. 16/31



Turnaround time vs. quantum

– p. 17/31



Two-level scheduling

• Switching to swapped out process very expensive

- Swapped out process has most pages on disk

- Will have to fault them all in while running

- One disk access costs 10ms. On 1GHz machine, 10ms = 10

million cycles!

• Context-switch-cost aware scheduling

- Run in core subset for “a while”

- Then move some between disk and memory

- How to pick subset? Hot to define “a while”?

– p. 18/31



Priority scheduling

• A priority number (integer) is associated with each
process

- E.g., smaller priority number means higher priority

• Give CPU to the process with highest priority

- Can be done preemptively or non-preemptively

• Note SJF is a priority scheduling where priority is

the predicted next CPU burst time

• Starvation – low priority processes may never execute

• Solution?

– p. 19/31



Priority scheduling

• A priority number (integer) is associated with each
process

- E.g., smaller priority number means higher priority

• Give CPU to the process with highest priority

- Can be done preemptively or non-preemptively

• Note SJF is a priority scheduling where priority is

the predicted next CPU burst time

• Starvation – low priority processes may never execute

• Solution?

- Aging - increase a process’s priority as it waits

– p. 19/31



Multilevel feeedback queues (BSD)

• Every runnable proc. on one of 32 run queues

- Kernel runs proc. on highest-priority non-empty queue

- Round-robins among processes on same queue

• Process priorities dynamically computed

- Processes moved between queues to reflect priority changes

- If a proc. gets higher priority than running proc., run it

• Idea: Favor interactive jobs that use less CPU
– p. 20/31



Process priority

• p_ni
e – user-settable weighting factor

• p_est
pu – per-process estimated CPU usage

- Incremented whenever timer interrupt found proc. running

- Decayed every second while process runnable

p_estcpu←

(

2 · load

2 · load + 1

)

p_estcpu + p_nice

• Run queue determined by p_usrpri/4

p_usrpri← 50 +
(

p_estcpu

4

)

+ 2 · p_nice

(value clipped if over 127)

– p. 21/31



Sleeping process increases priority

• p_est
pu not updated while asleep

- Instead p_slptime keeps count of sleep time

• When process becomes runnable

p_estcpu←

(

2 · load

2 · load + 1

)p_slptime
× p_estcpu

- Approximates decay ignoring nice and past loads

– p. 22/31



Limitations of BSD scheduler

• Hard to have isolation / prevent interference

- Priorities are absolute

• Can’t transfer priority (e.g., to server on RPC)

• No flexible control

- E.g., In monte carlo simulations, error is 1/sqrt(N) after N trials

- Want to get quick estimate from new computation

- Leave a bunch running for a while to get more accurate results

• Multimedia applications

- Often fall back to degraded quality levels depending on

resources

- Want to control quality of different streams

– p. 23/31



Real-time scheduling

• Two categories:

- Soft real time—miss deadline and CD will sound funny

- Hard real time—miss deadline and plane will crash

• System must handle periodic and aperiodic events

- E.g., procs A, B, C must be scheduled every 100, 200, 500 msec,

require 50, 30, 100 msec respectively

- Schedulable if
∑ CPU

period
≤ 1 (not counting switch time)

• Variety of scheduling strategies

- E.g., first deadline first (works if schedulable)

– p. 24/31



Multiprocessor scheduling issues
• Must decide more than which process to run

- Must decide on which CPU to run it

• Moving between CPUs has costs

- More cache misses, depending on arch more TLB misses too

• Affinity scheduling—try to keep threads on same CPU

- But also prevent load imbalances

- Do cost-benefit analysis when deciding to migrate

– p. 25/31



Multiprocessor scheduling (cont)
• Want related processes scheduled together

- Good if threads access same resources (e.g., cached files)

- Even more important if threads communicate often,

otherwise must context switch to communicate

• Gang scheduling—schedule all CPUs synchronously

- With synchronized quanta, easier to schedule related

processes/threads together

– p. 26/31



Thread scheduling

• With thread library, have two scheduling decisions:

- Local Scheduling – Threads library decides which user thread to

put onto an available kernel thread

- Global Scheduling – Kernel decides which kernel thread to run

next

• Can expose to the user

- E.g., pthread_attr_sets
ope allows two choices

- PTHREAD_SCOPE_SYSTEM – thread scheduled like a process

(effectively one kernel thread bound to user thread)

- PTHREAD_SCOPE_PROCESS – thread scheduled within the current

process (may have multiple user threads multiplexed onto

kernel threads)

– p. 27/31



Thread dependencies

• Priority inversion e.g., T1 at high priority, T2 at low

- T2 acquires lock L.

- Scene 1: T1 tries to acquire L, fails, spins. T2 never gets to run.

- Scene 2: T1 tries to acquire L, fails, blocks. T3 enters system at

medium priority. T2 never gets to run.

• Scheduling = deciding who should make progress

- Obvious: a thread’s importance should increase with the

importance of those that depend on it.

- Naïve priority schemes violate this

• “Priority donation”

- Thread’s priority scales w. priority of dependent threads

– p. 28/31



Fair Queuing (FQ)
• Digression: packet scheduling problem

- Which network packet to send next over a link?

- Problem inspired some algorithms we will see next time

• For ideal fairness, would send one bit from each flow

- In weighted fair queuing (WFQ), more bits from some flows

Flow 1

Flow 2

Flow 3

Flow 4

Round-robin
service

• Complication: must send whole packets
– p. 29/31



FQ Algorithm
• Suppose clock ticks each time a bit is transmitted

• Let Pi denote the length of packet i

• Let Si denote the time when start to transmit packet i

• Let Fi denote the time when finish transmitting

packet i

• Fi = Si + Pi

• When does router start transmitting packet i?

- If arrived before router finished packet i− 1 from this flow, then

immediately after last bit of i− 1 (Fi−1)

- If no current packets for this flow, then start transmitting when

arrives (call this Ai)

• Thus: Fi = max(Fi−1, Ai) + Pi

– p. 30/31



FQ Algorithm (cont)

• For multiple flows

- Calculate Fi for each packet that arrives on each flow

- Treat all Fis as timestamps

- Next packet to transmit is one with lowest timestamp

• Not perfect: can’t preempt current packet

• Example:

Flow 1 Flow 2

(a) (b)

Output Output

F = 8 F = 10

F = 5

F = 10

F = 2

Flow 1
(arriving)

Flow 2
(transmitting)

– p. 31/31


	CPU Scheduling
	CPU Scheduling
	Scheduling criteria
	Scheduling criteria

	Example: FCFS Scheduling
	FCFS continued
	Bursts of computation & I/O
	Histogram of CPU-burst times
	FCFS Convoy effect
	SJF Scheduling
	SJF Scheduling

	Examples
	SJF limitations
	Exp. weighted average example
	Round robin (RR)
scheduling
	RR disadvantages
	Context switch costs
	Context switch costs

	Time quantum
	Turnaround time vs. quantum
	Two-level scheduling
	Priority scheduling
	Priority scheduling

	Multilevel feeedback queues (BSD)
	Process priority
	Sleeping process increases priority
	Limitations of BSD scheduler
	Real-time scheduling
	Multiprocessor scheduling issues
	Multiprocessor scheduling (cont)
	Thread scheduling
	Thread dependencies
	Fair Queuing (FQ)
	FQ Algorithm
	FQ Algorithm (cont)

