Graph Theory Connectivity, Coloring, Matching

Arjun Suresh¹

¹GATE Overflow

GO Classroom, August 2018 Thanks to Subarna/Sukanya Das for wonderful figures

• • • • • • • • • • • •

Table of Contents

Arjun, Suresh (GO)

Graph Theory

▲ ■ ▶ ■ • つへで GATE 2019 2 / 55

< □ > < □ > < □ > < □ > < □ >

Table of Contents

2 Graph Connectivity

Arjun, Suresh (GO)

 ▲ ■
 ■
 • ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 <th

< □ > < □ > < □ > < □ > < □ >

Graph

Graph

G = (V, E) is a graph and consists of a set of objects called vertices and edges such that each edge e_k is associated with an unordered pair of vertices (v_i, v_j)

→ Ξ →

Directed Graph

A graph G = (V, E) is a directed graph if each edge e_k is associated with an ORDERED pair of vertices (v_i, v_j)

Figure: Directed Graph

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Simple Graph

A graph that has neither self loops nor parallel edges

GATE 2019 6 / 55

Finite Graph

By default the number of edges or vertices in a graph can be infinite. A graph with a finite number of vertices and edges is called a finite graph

Arjun, Suresh (GO)

Graph Theory

GATE 2019 7 / 55

Null graph

A graph without any edges

Arjun, Suresh (GO)

Graph Theory

▲ ■ ▶ ■ つへへ GATE 2019 8 / 55

< □ > < □ > < □ > < □ > < □ >

Incidence

If a vertex v_i is an end vertex of an edge e_k , we say v_i and e_k are incident with each other

Figure: Here V_1 and e_1 are incident with each other

• • = • •

Degree

The number of edges incident on a vertex v_i with self loops counted twice is called the degree of vertex v_i

Arjun, Suresh (GO)

Graph Theory

GATE 2019 10 / 55

Isolated vertex

A vertex having no incident edges (zero degree)

Figure: Isolated Vertex (Degree of V_1 vertex is 0)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Pendant vertex

A vertex of degree one

Figure: Pendant Vertex(Degree of vertex V_1 is 1)

Arjun, Suresh (GO)

Graph Theory

GATE 2019 12 / 55

Subgraphs

Subgraphs

A graph H is said to be a subgraph of a graph G ($H \subset G$) if all vertices and edges of H are in G and all edges of H have the same end vertices in H as in G

- Every graph is its own subgraph
- A single vertex in a graph is its subgraph
- A single edge of a graph with the end vertices is its subgraph

Complete Graph

Complete Graph

A graph in which every vertex is connected to every other vertex is called a complete graph

- Also known as a clique
- A complete graph of *n* vertices contain n(n-1)/2 edges

Graph Theory

GATE 2019 14 / 55

Walk

An alternating sequence of vertices and edges beginning and ending with vertices such that each edge is incident on the preceding and succeeding vertices is called a walk. A vertex can repeat in a walk but not any edge.

• • • • • • • • • • • • •

Open and Closed Walk

A walk with same start and end vertices is called an closed walk. A walk that is not closed is open walk.

Path

An open walk with no repeating vertices

Arjun, Suresh (GO)

Graph Theory

GATE 2019 17 / 55

Circuit

A closed walk in which no vertex appears more than once

Arjun, Suresh (GO)

Graph Theory

GATE 2019 18 / 55

Image: A matching of the second se

Euler Graph

Euler line and Euler Graph

A closed walk containing all edges of a graph is called an Euler line and a graph containing an Euler line is called an Euler graph

Theorem

A given connected graph G is Euler if and only if all vertices of G are of even degree. *i.e.*,

- A given connected graph G is Euler if all its vertices are of even degree
- If all vertices of a graph G are of even degree then G is an Euler graph

→ ∃ →

Euler Graph

Hamiltonian Circuit

A closed walk that traverses every vertex exactly once except the starting and ending vertex. Or a circuit including every vertex of a graph. A Hamiltonian circuit in a graph of n vertices is of length n.

Hamiltonian Path

A path obtained by removing any edge from a Hamiltonian circuit. The length of a Hamiltonian path in a graph of n vertices is n-1

- A graph containing a Hamiltonian circuit always has a Hamiltonian path but the reverse is not always true. i.e., some graphs have Hamiltonian path but not any Hamiltonian circuit.
- Unlike for Euler graph, there is no known necessary and sufficient condition for a graph to have a Hamiltonian circuit

< □ > < □ > < □ > < □ > < □ > < □ >

Hamiltonian Paths and Circuits

Figure: Hamiltonian Circuit : $(V_1 \rightarrow V_8 \rightarrow V_5 \rightarrow V_2 \rightarrow V_3$ $\rightarrow V_6 \rightarrow V_7 \rightarrow V_4 \rightarrow V_1)$ Figure: Hamiltonian Path : $(V_1 \rightarrow V_8 \rightarrow V_5 \rightarrow V_2 \rightarrow V_3$ $\rightarrow V_6 \rightarrow V_7 \rightarrow V_4)$

V.

V_

٧,

< □ > < □ > < □ > < □ > < □ >

Theorem

In a complete graph of n vertices (n is odd and $n \ge 3$) there are (n - 1)/2 edge-disjoint Hamiltonian circuits

Theorem

A sufficient (not necessary) condition for a simple graph G with n vertices to have a Hamiltonian circuit is that the degree of every vertex of G be at least n/2

23 / 55

A D F A B F A B F A B

GATE 2019

Table of Contents

2 Graph Connectivity

3 Graph Coloring

Arjun, Suresh (GO)

Graph Theory

▶ ◀ ≣ ▶ ■ ク ۹ C GATE 2019 24 / 55

< □ > < □ > < □ > < □ > < □ >

Tells us if a given sequence of integers can form the degree sequence of a graph.

Theorem

Let $S = (d_1, \ldots, d_n)$ be a finite list of nonnegative integers that is nonincreasing. List S is graphic if and only if the finite list $S' = (d_2 - 1, d_3 - 1, \ldots, d_{d_1+1} - 1, d_{d_1+2}, \ldots, d_n)$ has non-negative integers and is graphic.

25 / 55

< □ > < 同 > < 回 > < 回 > < 回 >

GATE 2019

Havel-Hakimi Algorithm

- $S = \langle 5, 5, 4, 3, 2, 2, 1 \rangle$
- Subtract 1 from the next 5 numbers after removing the leading 5

 $S'=\langle 4,3,2,1,1,1
angle$

(already in non decreasing order)

- Remove 4
 S' = ⟨2, 1, 0, 0, 1⟩
- Rearrange in non decreasing order $S' = \langle 2, 1, 1, 0, 0 \rangle$
- Remove 2

 $S'=\langle 0,0,0,0
angle$

• Hence, graphic.

- $S = \langle 5, 5, 5, 3, 2, 2, 1 \rangle$
- Subtract 1 from the next 5 numbers after removing the leading 5

 $S'=\langle 4,4,2,1,1,1
angle$

(already in non decreasing order)

- Remove 4 $S' = \langle 3, 1, 0, 0, 1 \rangle$
- Rearrange in non decreasing order $S' = \langle 3, 1, 1, 0, 0 \rangle$
- Remove 3
 - $S'=\langle 0,0,-1,0
 angle$

• Negative number came, hence not graphic.

Connected Component

Cut-Set

Every connected subgraph of a disconnected graph G is a component of G

Arjun, Suresh (GO)

Graph Theory

GATE 2019 27 / 55

Tree

A tree is

- A connected graph without a circuit
- A connected graph of n vertices and n-1 edges
- A graph in which there is a unique path between any two vertices
- A minimally connected graph (minimally connected removal of any one edge disconnects the graph)
- A circuit-less graph with n-1 edges

- The distance between two vertices v_i and v_j in a connected graph is the length of the shortest path between them
- Eccentricity of a vertex E(v) is the distance of v with the vertex farthest from it
- A vertex with the minimal eccentricity in a graph G is called a center of G there can be multiple centers for a graph
- A tree has either one or two centers

29 / 55

.

GATE 2019

Number of labeled trees with *n* vertices $(n \ge 2)$ is n^{n-2}

< □ > < □ > < □ > < □ > < □ >

Spanning Tree

A tree T is said to be a spanning tree of a connected graph G if T is a subgraph of G and contains all vertices of G

- An edge in a spanning tree T is called a branch of T
- An edge of a graph which is not in a given spanning tree ${\cal T}$ is called a chord of ${\cal T}$
- A circuit formed by adding a chord to any spanning tree is called a fundamental circuit

31 / 55

< □ > < 同 > < 回 > < 回 >

GATE 2019

Spanning Trees

Spanning Tree

With respect to any spanning tree, a connected graph of n vertices and e edges has n-1 tree branches and e - n + 1 chords

- Rank of a graph G is the number of branches in any spanning tree of G
- Nullity of a graph G (also referred to as cyclomatic number) is the number of chords with respect to any spanning tree in G
- Rank + Nullity = Number of edges

33 / 55

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

GATE 2019

Distance between two Spanning Tree

The distance between two spanning trees T_1 and T_2 of a graph G, $d(T_1, T_2)$ is the number of edges present in one but not in the other

- We can generate a spanning tree T₂ from another spanning tree T₁ by adding a chord and removing an appropriate branch cyclic interchange
- The minimum number of cyclic interchanges required to get a spanning tree T₂ from another spanning tree T₁ is given by d(T₁, T₂)
- $\max d(T_1, T_2) \leq \min(\mu, r), \mu \text{nullity}, r \text{rank}$

イロト 不得 トイラト イラト 一日

Central Tree

A spanning tree with the minimal distance with any other spanning tree is called a central tree

i.e., for a central tree T_c ,

$$\max_{i} d(T_{c}, T_{i}) \leq \max_{j} d(T, T_{j}), \forall \text{ tree } T \text{ of } G$$

< □ > < 同 > < 回 > < Ξ > < Ξ

Cut-Sets and Cut-Vertices

Cut-Set

A cut-set is a set of edges in a connected graph G whose removal from G leaves the graph disconnected, provided removal of no proper subset of these edges disconnects G

Figure: Cut set :(By removal of e_3 , e_4 , e_5 edges this graph will be disconnected)

Theorem 1

Every cut-set in a connected graph G must contain at least one branch from EVERY spanning tree of G

Theorem 2 - Converse of Theorem 1

In a connected graph G every minimal set of edges containing at least one branch of EVERY spanning tree is a cut-set

Theorem 3

Every cut-set has an even number of edges in common with every circuit

Edge and Vertex Connectivity

Edge Connectivity

The number of edges in the smallest cut-set

Vertex Connectivity

The minimum number of vertices whose removal leaves the remaining graph disconnected

• The edge and vertex connectivity of a tree is one

Separable Graph

A connected graph is said to be separable if its vertex connectivity is one

• • = • • =

- The edge connectivity of a graph *G* cannot exceed the degree of the vertex of *G* with the smallest degree
- The vertex connectivity of a graph *G* cannot exceed its edge connectivity
- The maximum vertex connectivity one can achieve with a graph of *n* vertices and *e* edges is $\left|\frac{2e}{n}\right|$

< □ > < 同 > < 三 > <

Table of Contents

2 Graph Connectivity

Arjun, Suresh (GO)

Graph Theory

▶ ◀ ≣ ▶ ≣ ∽ ९ ୯ GATE 2019 40 / 55

< □ > < □ > < □ > < □ > < □ >

Graph Coloring

Proper Coloring

Coloring all the vertices of a graph such that no adjacent vertices are of same color is called proper coloring of a graph

- A graph that requires minimum k different colors for proper coloring is called k chromatic graph
- Minimum number of colors required for proper coloring of a graph is called the chromatic number of the graph

- A graph consisting of only isolated vertices is 1-chromatic
- A graph with one or more edges is at least 2-chromatic
- A complete graph of *n* vertices is *n*-chromatic

< □ > < □ > < □ > < □ > < □ > < □ >

- Finding chromatic number of a graph is NP-hard no polynomial time algorithm known so far
- Chromatic number of some specific types of graphs can be found easily
 - Every tree with 2 or more vertices is 2- chromatic (every 2- chromatic graph is not a tree)
 - A graph of at least one edge is 2- chromatic if and only if does not have any circuit of odd length

< □ > < 同 > < 回 > < Ξ > < Ξ

Chromatic Number

Figure: Chromatic Number: $\chi(G) = 1$

Figure: Chromatic Number: $\chi(G) = 2$

Arjun, Suresh (GO)

Graph Theory

▶ ◀ ≣ ▶ ≣ ∽ ९ ୯ GATE 2019 44 / 55

< □ > < □ > < □ > < □ > < □ >

Chromatic Number

Chromatic Number

Figure: Chromatic Number: $\chi(C_6) = 2$

Chromatic Partitioning

- A proper coloring of a graph induces a partitioning of its vertices into disjoint subsets
- No two vertices in any of these partitions are adjacent

Bipartite Graph

A graph G is called a bipartite graph if the vertex set of G can be decomposed into two disjoint subsets V_1 and V_2 such that every edge in G joins a vertex in V_1 with a vertex in V_2 .

- Every 2-chromatic graph is bipartite
- Every bipartite graph except one with two or more isolated vertices and no edges, is 2- chromatic

< □ > < □ > < □ > < □ > < □ > < □ >

Bipartite Graph

V₂ V₅ V₄

Figure: Set
$$A = \{V_1, V_3, V_5\}$$

Set $B = \{V_2, V_4\}$

Figure: Set $A = \{V_1, V_6, V_8, V_4\}$ Set $B = \{V_2, V_3, V_5, V_7\}$

Arjun, Suresh (GO)

Graph Theory

GATE 2019 49 / 55

Independent Set

Independent Set

A set of vertices in a graph is said to be independent set if no two vertices in the set are adjacent

- A maximal independent set is an independent set to which no vertex can be added without losing the independence property
- The number of vertices in the largest independent set of a graph is called its independence number β(G). If n is the number of vertices and k the chromatic number

$$\beta(G) \geq \frac{n}{k}$$

 The minimum number of maximal independent sets which collectively include all the vertices of a graph, gives its chromatic number

A D N A B N A B N A B N

Table of Contents

2 Graph Connectivity

Arjun, Suresh (GO)

Graph Theory

▶ ◀ ≣ ▶ ≣ ∽ ९ ୯ GATE 2019 51 / 55

< □ > < □ > < □ > < □ > < □ >

Matching

Matching

A matching in a graph is a subset of its edges such that no two edges are adjacent

- A maximal matching is a matching to which no more edges can be added
- In a complete graph of 3 vertices each edge is a maximal matching
- A maximal matching with the largest number of edges is called a largest maximal matching
- The number of edges in the largest maximal matching of a graph is called its matching number

A D F A B F A B F A B

Complete Matching

Complete Matching

A matching in a bipartite graph with vertex partition V_1 and V_2 is a complete matching of vertices in V_1 into those in V_2 if there is an edge incident on each vertex of V_1

- A complete matching if it exists is a largest maximal matching
- A largest maximal matching need not be complete

Theorem

A complete matching of V_1 into V_2 in a bipartite graph exists if and only if every subset of r vertices in V_1 is collectively adjacent to r or more vertices in V_2 for all possible values of r.

(日) (四) (日) (日) (日)

Complete Matching

Complete Matching

A matching in a bipartite graph with vertex partition V_1 and V_2 is a complete matching of vertices in V_1 into those in V_2 if there is an edge incident on each vertex of V_1

- A complete matching if it exists is a largest maximal matching
- A largest maximal matching need not be complete

Theorem

A complete matching of V_1 into V_2 in a bipartite graph exists if and only if every subset of r vertices in V_1 is collectively adjacent to r or more vertices in V_2 for all possible values of r

(日) (四) (日) (日) (日)

Theorem

In a bipartite graph a complete matching of V_1 into V_2 exists if there is a positive integer m such that

degree of every vertex in $V_1 \ge m \ge$ degree of every vertex in V_2

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >