Graph Theory
 Connectivity, Coloring, Matching

Arjun Suresh ${ }^{1}$

${ }^{1}$ GATE Overflow

GO Classroom, August 2018

Thanks to Subarna/Sukanya Das for wonderful figures

Table of Contents

(1) Graph
(2) Graph Connectivity
(3) Graph Coloring
4) Matching

Table of Contents

(1) Graph
(2) Graph Connectivity
(3) Graph Coloring
4) Matching

Graph

Graph

$G=(V, E)$ is a graph and consists of a set of objects called vertices and edges such that each edge e_{k} is associated with an unordered pair of vertices $\left(v_{i}, v_{j}\right)$

Figure: Graph

Graph Types

Directed Graph

A graph $G=(V, E)$ is a directed graph if each edge e_{k} is associated with an ORDERED pair of vertices $\left(v_{i}, v_{j}\right)$

Figure: Directed Graph

Graph Types

Simple Graph

A graph that has neither self loops nor parallel edges

Figure: Simple Graphs

Graph Types

Finite Graph

By default the number of edges or vertices in a graph can be infinite. A graph with a finite number of vertices and edges is called a finite graph

Figure: Finite Graph

Graph Types

Null graph

A graph without any edges

Figure: Null Graph

Incidence and Degree

Incidence

If a vertex v_{i} is an end vertex of an edge e_{k}, we say v_{i} and e_{k} are incident with each other

Figure: Here V_{1} and e_{1} are incident with each other

Incidence and Degree

Degree

The number of edges incident on a vertex v_{i} with self loops counted twice is called the degree of vertex v_{i}

Figure: Degree of vertex V_{1} is 5

Incidence and Degree

Isolated vertex

A vertex having no incident edges (zero degree)

Figure: Isolated Vertex(Degree of V_{1} vertex is 0)

Incidence and Degree

Pendant vertex

A vertex of degree one

Figure: Pendant Vertex(Degree of vertex V_{1} is 1)

Subgraphs

Subgraphs

A graph H is said to be a subgraph of a graph $G(H \subset G)$ if all vertices and edges of H are in G and all edges of H have the same end vertices in H as in G

- Every graph is its own subgraph
- A single vertex in a graph is its subgraph
- A single edge of a graph with the end vertices is its subgraph

Figure: Subgraph

Complete Graph

Complete Graph

A graph in which every vertex is connected to every other vertex is called a complete graph

- Also known as a clique
- A complete graph of n vertices contain $n(n-1) / 2$ edges

Figure: Complete Graph

Walks, Paths and Circuits

Walk

An alternating sequence of vertices and edges beginning and ending with vertices such that each edge is incident on the preceding and succeeding vertices is called a walk. A vertex can repeat in a walk but not any edge.

Figure: Walk: $V_{6} \rightarrow V_{4} \rightarrow V_{2} \rightarrow V_{3} \rightarrow V_{4} \rightarrow V_{1}$ Length of the Walk: 5

Walks, Paths and Circuits

Open and Closed Walk

A walk with same start and end vertices is called an closed walk. A walk that is not closed is open walk.

Figure: Open walk :
$\left(V_{6} \rightarrow V_{2} \rightarrow V_{3} \rightarrow V_{4} \rightarrow V_{5} \rightarrow V_{6} \rightarrow V_{7}\right)$
Figure: Closed walk :
$\left(V_{7} \rightarrow V_{4} \rightarrow V_{3} \rightarrow V_{2} \rightarrow V_{7}\right)$

Walks, Paths and Circuits

Path

An open walk with no repeating vertices

Figure: Path: $V_{1} \rightarrow V_{2} \rightarrow V_{3} \rightarrow V_{4} \rightarrow V_{5} \rightarrow V_{6} \rightarrow V_{7}$

Walks, Paths and Circuits

Circuit

A closed walk in which no vertex appears more than once

Figure: Circuit : $V_{1} \rightarrow V_{2} \rightarrow V_{3} \rightarrow V_{4} \rightarrow V_{5} \rightarrow V_{1}$

Euler Graph

Euler line and Euler Graph

A closed walk containing all edges of a graph is called an Euler line and a graph containing an Euler line is called an Euler graph

Theorem

A given connected graph G is Euler if and only if all vertices of G are of even degree. i.e.,

- A given connected graph G is Euler if all its vertices are of even degree
- If all vertices of a graph G are of even degree then G is an Euler graph

Euler Graph

Figure: Euler Line : $V_{1} \rightarrow V_{2} \rightarrow V_{3} \rightarrow V_{6} \rightarrow V_{5} \rightarrow V_{2} \rightarrow V_{4} \rightarrow V_{5} \rightarrow V_{3} \rightarrow V_{1}$
Euler Graph

Hamiltonian Paths and Circuits

Hamiltonian Circuit

A closed walk that traverses every vertex exactly once except the starting and ending vertex. Or a circuit including every vertex of a graph. A Hamiltonian circuit in a graph of n vertices is of length n.

Hamiltonian Path

A path obtained by removing any edge from a Hamiltonian circuit. The length of a Hamiltonian path in a graph of n vertices is $n-1$

- A graph containing a Hamiltonian circuit always has a Hamiltonian path but the reverse is not always true. i.e., some graphs have Hamiltonian path but not any Hamiltonian circuit.
- Unlike for Euler graph, there is no known necessary and sufficient condition for a graph to have a Hamiltonian circuit

Hamiltonian Paths and Circuits

Figure: Hamiltonian Circuit :
$\left(V_{1} \rightarrow V_{8} \rightarrow V_{5} \rightarrow V_{2} \rightarrow V_{3}\right.$
$\left.\rightarrow V_{6} \rightarrow V_{7} \rightarrow V_{4} \rightarrow V_{1}\right)$

Figure: Hamiltonian Path :

$$
\begin{aligned}
& \left(V_{1} \rightarrow V_{8} \rightarrow V_{5} \rightarrow V_{2} \rightarrow V_{3}\right. \\
& \left.\rightarrow V_{6} \rightarrow V_{7} \rightarrow V_{4}\right)
\end{aligned}
$$

Hamiltonian Circuits

Theorem
In a complete graph of n vertices (n is odd and $n \geq 3$) there are $(n-1) / 2$ edge-disjoint Hamiltonian circuits

Theorem

A sufficient (not necessary) condition for a simple graph G with n vertices to have a Hamiltonian circuit is that the degree of every vertex of G be at least $n / 2$

Table of Contents

(1) Graph
(2) Graph Connectivity
(3) Graph Coloring
4. Matching

Havel-Hakimi Algorithm

Tells us if a given sequence of integers can form the degree sequence of a graph.

Theorem

Let $S=\left(d_{1}, \ldots, d_{n}\right)$ be a finite list of nonnegative integers that is nonincreasing. List S is graphic if and only if the finite list $S^{\prime}=\left(d_{2}-1, d_{3}-1, \ldots, d_{d_{1}+1}-1, d_{d_{1}+2}, \ldots, d_{n}\right)$ has non-negative integers and is graphic.

Havel-Hakimi Algorithm

- $S=\langle 5,5,4,3,2,2,1\rangle$
- Subtract 1 from the next 5 numbers after removing the leading 5
$S^{\prime}=\langle 4,3,2,1,1,1\rangle$
(already in non decreasing order)
- Remove 4

$$
S^{\prime}=\langle 2,1,0,0,1\rangle
$$

- Rearrange in non decreasing order

$$
S^{\prime}=\langle 2,1,1,0,0\rangle
$$

- Remove 2

$$
S^{\prime}=\langle 0,0,0,0\rangle
$$

- Hence, graphic.
- $S=\langle 5,5,5,3,2,2,1\rangle$
- Subtract 1 from the next 5 numbers after removing the leading 5
$S^{\prime}=\langle 4,4,2,1,1,1\rangle$
(already in non decreasing order)
- Remove 4

$$
S^{\prime}=\langle 3,1,0,0,1\rangle
$$

- Rearrange in non decreasing order $S^{\prime}=\langle 3,1,1,0,0\rangle$
- Remove 3

$$
S^{\prime}=\langle 0,0,-1,0\rangle
$$

- Negative number came, hence not graphic.

Connected Component

Cut-Set

Every connected subgraph of a disconnected graph G is a component of G

Tree

A tree is

- A connected graph without a circuit
- A connected graph of n vertices and $n-1$ edges
- A graph in which there is a unique path between any two vertices
- A minimally connected graph (minimally connected - removal of any one edge disconnects the graph)
- A circuit-less graph with $n-1$ edges

Figure: Tree

Distance and Centers

- The distance between two vertices v_{i} and v_{j} in a connected graph is the length of the shortest path between them
- Eccentricity of a vertex $E(v)$ is the distance of v with the vertex farthest from it
- A vertex with the minimal eccentricity in a graph G is called a center of G - there can be multiple centers for a graph
- A tree has either one or two centers

Counting Trees

Number of labeled trees with n vertices $(n \geq 2)$ is n^{n-2}

Spanning Trees

Spanning Tree

A tree T is said to be a spanning tree of a connected graph G if T is a subgraph of G and contains all vertices of G

- An edge in a spanning tree T is called a branch of T
- An edge of a graph which is not in a given spanning tree T is called a chord of T
- A circuit formed by adding a chord to any spanning tree is called a fundamental circuit

Spanning Trees

Figure: Connected Graph

Figure: Spanning Tree

Spanning Trees

Spanning Tree

With respect to any spanning tree, a connected graph of n vertices and e edges has $n-1$ tree branches and $e-n+1$ chords

- Rank of a graph G is the number of branches in any spanning tree of G
- Nullity of a graph G (also referred to as cyclomatic number) is the number of chords with respect to any spanning tree in G
- Rank + Nullity $=$ Number of edges

Spanning Trees

Distance between two Spanning Tree

The distance between two spanning trees T_{1} and T_{2} of a graph G, $d\left(T_{1}, T_{2}\right)$ is the number of edges present in one but not in the other

- We can generate a spanning tree T_{2} from another spanning tree T_{1} by adding a chord and removing an appropriate branch - cyclic interchange
- The minimum number of cyclic interchanges required to get a spanning tree T_{2} from another spanning tree T_{1} is given by $d\left(T_{1}, T_{2}\right)$
- maxd $\left(T_{1}, T_{2}\right) \leq \min (\mu, r), \mu$ - nullity, r - rank

Spanning Trees

Central Tree

A spanning tree with the minimal distance with any other spanning tree is called a central tree
i.e., for a central tree T_{c},

$$
\max _{i} d\left(T_{c}, T_{i}\right) \leq \max _{j} d\left(T, T_{j}\right), \forall \text { tree } T \text { of } G
$$

Cut-Sets and Cut-Vertices

Cut-Set

A cut-set is a set of edges in a connected graph G whose removal from G leaves the graph disconnected, provided removal of no proper subset of these edges disconnects G

Figure: Cut set :(By removal of e_{3}, e_{4}, e_{5} edges this graph will be disconnected)

Cut-Sets and Cut-Vertices

Theorem 1

Every cut-set in a connected graph G must contain at least one branch from EVERY spanning tree of G

Theorem 2 - Converse of Theorem 1

In a connected graph G every minimal set of edges containing at least one branch of EVERY spanning tree is a cut-set

Theorem 3

Every cut-set has an even number of edges in common with every circuit

Edge and Vertex Connectivity

Edge Connectivity

The number of edges in the smallest cut-set

Vertex Connectivity

The minimum number of vertices whose removal leaves the remaining graph disconnected

- The edge and vertex connectivity of a tree is one

Separable Graph

A connected graph is said to be separable if its vertex connectivity is one

Edge and Vertex Connectivity

- The edge connectivity of a graph G cannot exceed the degree of the vertex of G with the smallest degree
- The vertex connectivity of a graph G cannot exceed its edge connectivity
- The maximum vertex connectivity one can achieve with a graph of n vertices and e edges is $\left\lfloor\frac{2 e}{n}\right\rfloor$

Table of Contents

(1) Graph
(2) Graph Connectivity
(3) Graph Coloring
(4) Matching

Graph Coloring

Proper Coloring

Coloring all the vertices of a graph such that no adjacent vertices are of same color is called proper coloring of a graph

- A graph that requires minimum k different colors for proper coloring is called k - chromatic graph
- Minimum number of colors required for proper coloring of a graph is called the chromatic number of the graph

Figure: Colouring of a Graph

Chromatic Number

- A graph consisting of only isolated vertices is 1 -chromatic
- A graph with one or more edges is at least 2 -chromatic
- A complete graph of n vertices is n-chromatic
- A graph consisting of simply one circuit with $n \geq 3$ is $\begin{cases}2 \text {-chromatic } & \text { if } n \text { is even } \\ 3 \text {-chromatic } & \text { if } n \text { is odd }\end{cases}$

Chromatic Number

- Finding chromatic number of a graph is NP-hard - no polynomial time algorithm known so far
- Chromatic number of some specific types of graphs can be found easily
- Every tree with 2 or more vertices is 2 - chromatic (every $2-$ chromatic graph is not a tree)
- A graph of at least one edge is 2 - chromatic if and only if does not have any circuit of odd length

Chromatic Number

Figure: Chromatic Number: $\chi(G)=1$

Figure: Chromatic Number: $\chi(G)=2$

Chromatic Number

Figure: Chromatic Number: $\chi(G)=6$

Figure: Chromatic Number: $\chi(G)=2$

Chromatic Number

Figure: Chromatic Number: $\chi\left(C_{6}\right)=2$

Figure: Chromatic Number: $\chi\left(C_{5}\right)=3$

Chromatic Partitioning

- A proper coloring of a graph induces a partitioning of its vertices into disjoint subsets
- No two vertices in any of these partitions are adjacent

Figure: Set $A=\left\{V_{1}, V_{4}, V_{6}\right\}$
Set $B=\left\{V_{2}\right\}$
Set $C=\left\{V_{3}\right\}$
Set $D=\left\{V_{5}\right\}$
Chromatic Number: $\chi(G)=4$

Bipartite Graph

Bipartite Graph

A graph G is called a bipartite graph if the vertex set of G can be decomposed into two disjoint subsets V_{1} and V_{2} such that every edge in G joins a vertex in V_{1} with a vertex in V_{2}.

- Every 2-chromatic graph is bipartite
- Every bipartite graph except one with two or more isolated vertices and no edges, is $2-$ chromatic

Bipartite Graph

Figure: Set $A=\left\{V_{1}, V_{3}, V_{5}\right\}$ Set $B=\left\{V_{2}, V_{4}\right\}$

Figure: Set $\begin{aligned} A & =\left\{V_{1}, V_{6}, V_{8}, V_{4}\right\} \\ \text { Set } B & =\left\{V_{2}, V_{3}, V_{5}, V_{7}\right\}\end{aligned}$

Figure: Set $A=\left\{V_{1}, V_{2}, V_{3}\right\}$ Set $B=\left\{V_{4}, V_{5}, V_{6}\right\}$

Figure: Set $A=\left\{V_{1}, V_{4}\right\}$ Set $B=\left\{V_{2}, V_{3}\right\}$

Independent Set

Independent Set

A set of vertices in a graph is said to be independent set if no two vertices in the set are adjacent

- A maximal independent set is an independent set to which no vertex can be added without losing the independence property
- The number of vertices in the largest independent set of a graph is called its independence number $\beta(G)$. If n is the number of vertices and k the chromatic number

$$
\beta(G) \geq \frac{n}{k}
$$

- The minimum number of maximal independent sets which collectively include all the vertices of a graph, gives its chromatic number

Table of Contents

(1) Graph
(2) Graph Connectivity
(3) Graph Coloring
(4) Matching

Matching

Matching

A matching in a graph is a subset of its edges such that no two edges are adjacent

- A maximal matching is a matching to which no more edges can be added
- In a complete graph of 3 vertices each edge is a maximal matching
- A maximal matching with the largest number of edges is called a largest maximal matching
- The number of edges in the largest maximal matching of a graph is called its matching number

Complete Matching

Complete Matching

A matching in a bipartite graph with vertex partition V_{1} and V_{2} is a complete matching of vertices in V_{1} into those in V_{2} if there is an edge incident on each vertex of V_{1}

- A complete matching if it exists is a largest maximal matching
- A largest maximal matching need not be complete

Theorem

A complete matching of V_{1} into V_{2} in a bipartite graph exists if and only if every subset of r vertices in V_{1} is collectively adjacent to r or more vertices in V_{2} for all possible values of r.

Complete Matching

Complete Matching

A matching in a bipartite graph with vertex partition V_{1} and V_{2} is a complete matching of vertices in V_{1} into those in V_{2} if there is an edge incident on each vertex of V_{1}

- A complete matching if it exists is a largest maximal matching
- A largest maximal matching need not be complete

Theorem

A complete matching of V_{1} into V_{2} in a bipartite graph exists if and only if every subset of r vertices in V_{1} is collectively adjacent to r or more vertices in V_{2} for all possible values of r

Complete Matching

Theorem

In a bipartite graph a complete matching of V_{1} into V_{2} exists if there is a positive integer m such that
degree of every vertex in $V_{1} \geq m \geq$ degree of every vertex in V_{2}

