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1 Abstract

A wide variety of algorithms can be used to determine the equivalence of two De-
terministic Finite Automata (DFAs) and/or Nondeterministic Finite Automata
(NFAs). This project focuses on three key areas:

1. A detailed discussion of several algorithms that can be used to prove the
equivalence of two DFAs (and/or NFAs, since every NFA has an equivalent
DFA), with an analysis of the time complexity involved in each case.

2. Modifications to a few of these algorithms to produce a ‘witness’ string if
the two automata are not equivalent. This string is accepted by one of
the automata, but not by the other, so it serves as a clear demonstration
of why the two automata are inequivalent.

3. A Java implementation of a couple of efficient algorithms to prove equiv-
alence. The code is designed specifically to work with JFLAP, the Java
Formal Language and Automata Package. JFLAP is a popular program
from Duke University which can be used to demonstrate and manipulate
models such as finite automata. JFLAP software allows students to en-
ter finite automata via an easy-to-use GUI, and this project incorporates
functionality so that instructors can grade homework assignments and/or
allow students to receive detailed feedback in the form of a witness.

2 Preliminaries

2.1 Definitions

This section presents some of the basic concepts and definitions used in the
body of this paper. Programmers are generally quite familiar with the regular
expressions which DFAs and NFAs represent, since they frequently use regu-
lar expressions to parse and manipulate strings. However, they may not have
encountered these expressions represented as state/transition models.

A Deterministic Finite Automaton (DFA) is formally defined as a 5-tuple
(Q, Σ, δ, q0, F ), where:

1. Q is a finite set of states.

2. Σ is a finite alphabet (the set of symbols used in the input strings).

3. δ is a transition function which maps a state and an input symbol to the
next state. δ: Q× Σ→ Q.

4. q0 is the start state, where q0 ∈ Q.

5. F is the set of “accepting” (final) states, where F ⊆ Q.
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A Nondeterministic Finite Automaton (NFA) is similar, but more flexible.
It also consists of a 5-tuple (Q, Σ, δ, q0, F ). The only difference is that the
transition function is defined as δ: Q× (Σ∪{ε})→ P (Q), where ε is the empty
string, and P (Q) is the power set of Q. While a DFA always moves to a single
state on a single input symbol, the NFA is nondeterministic, so it may have a
choice. Starting from a given state on a particular input symbol, the NFA could
have transitions to zero, one, or any of multiple states. The concept behind
the NFA is that it “nondeterministically” guesses an allowable possibility for a
given input. An NFA may also transition on the empty string, if so specified.

The DFA (or NFA) reads the input string one character at a time, and
moves to the next appropriate state according to the transition function (or
guesses the next state, if there are multiple options). A DFA “accepts” an
input string if the transition on the last symbol goes to an accepting state. An
NFA accepts the input string if at least one way exists to process this string
(including possible transitions on the empty string along the way) such that the
end result is an accepting state. Two finite automata are considered “equivalent”
if they have the same alphabet and accept the same set of strings (i.e., the same
language). Note that the DFA is simply a special, more restricted, case of the
NFA. To convert a DFA to an NFA, it is only necessary to change the type of
the transition function output from a state to a set of states. Moreover, every
NFA can be converted to an equivalent DFA (see the section on the subset
construction below); both of these models accept the same class of languages,
the regular languages.

δ(q, a) itself takes just one input symbol a, or ε, at a time. Therefore, for

convenience, we define the extended transition function δ̂ to take an input string
w and follow the appropriate series of transitions to a new set of possible states.
It is assumed that w ∈ Σ∗, where Σ∗ consists of a string of zero or more symbols
from Σ. The formal definition for δ̂(q, w) in DFAs is inductive:

Basis: |w| = 0, meaning w = ε. For all q ∈ Q, δ̂(q, ε) = q.

Induction: |w| > 0. Let w = xa where x ∈ Σ∗ and a ∈ Σ. Then δ̂(q, w) =

δ(δ̂(q, x), a).

A state in a DFA is considered equivalent to another state if no string exists
which is accepted by following the transitions from one of these states, but
rejected by following the transitions from the other state. In other words, the
same result (accept or reject) is always obtained from both states for the same
input string. On the other hand, if the states are not equivalent, they are
“distinguishable” by some string. Formally, states p and q are equivalent if for
every w ∈ Σ∗, δ̂(p, w) ∈ F iff δ̂(q, w) ∈ F , where F is the set of final (accepting)
states. Observe that for NFAs, the situation is more complex. Two states are
equivalent if for every string w, the transitions from the first state can lead
to an accepting state iff the transitions from the second state can result in an
accepting state. To be equivalent, both states must lead to a possible scenario
where w is accepted, or both states must have no path on w leading to any
accepting state.
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Figure 1: An NFA which accepts strings with a 1 in the second position from
the end.

A “minimized” DFA contains the least possible number of states necessary to
accept its language. The minimal DFA is unique for a given language, although
the states may be arbitrarily labeled with different names. To minimize a DFA,
each group of equivalent states must be combined into a single state, and all
unreachable states (those not accessible on any input string from the start state)
must be removed. (Formally, state q is reachable if an input string w exists such

that δ̂(q0, w) = q.) Note that an NFA may potentially have fewer states than
the minimal DFA for the same language. The format of the diagrams will
be discussed more in the next section, but one simple example is the NFA in
Figure 1, which accepts all strings with a 1 in the second position from the
end. It has three states, and it accepts strings such as 11, 010, and 000111.
The minimal DFA for this language requires four states, as shown in Figure 2.
Notice that it has one final state for strings ending in 0, and another final state
for strings ending in 1. Sipser [29] gives a somewhat bigger example for strings
with a 1 in the third position from the end (p. 51): the NFA only has four
states, but the minimal DFA requires eight. As we will see, there can be an
exponential difference in size between the NFA and the minimal DFA.

In addition to the DFA and NFA described above, a wide variety of automata
exists in the literature. Models have been tailored to a number of specialized
purposes. However, this paper will focus on the standard models, as DFAs and
NFAs are the most common automata used for regular languages.

2.2 JFLAP Diagrams of Finite Automata

The most intuitive way for a student to understand a finite automaton is to look
at a diagram. The examples in this paper were drawn in JFLAP. Figure 3 is a
DFA which accepts the language consisting of the string 001. It contains five
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Figure 2: A DFA which accepts strings with a 1 in the second position from the
end.

states, {q0, q1, q2, q3, q4}. In JFLAP, notice that the start state (q0) is indicated
with a large triangle. Transitions are indicated with arrows, and the alphabet in
this example includes the two symbols 0 and 1. Some of the arrows, such as the
one from q3 to q4, represent transitions for both symbols 0 and 1; the symbols
appear stacked on top of each other in the figure. The only accepting (final) state
here is q3, and it is distinguished by a double circle. A little experimentation
on the part of the reader (by following the transitions from the start state on a
given input) will show that 001 is the only string which is accepted. Any other
string will either not reach q3, and/or become stuck in the “dead” state, q4. The
JFLAP software does not require the dead state, since the transitions leading
to this state could simply be left out of the automaton, and q4 eliminated.
Any input that has no path to follow would be rejected. However, the strict
definition of the DFA normally specifies that the transition function is total,
meaning that it is defined for all possible inputs. Therefore, transitions on each
letter in the alphabet should be shown exiting each state in the DFA, and a
dead state should be employed where necessary.

A couple of other simple examples we will refer to later: the DFA in Fig-
ure 4 accepts the language consisting of the string 00, and Figure 5 accepts 01.
The only difference between these two diagrams, aside from the naming of the
states, is that the transitions exiting qb and qf flip the 0 vs. the 1, so that the
appropriate string reaches the accepting state.
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Figure 3: A DFA which accepts only the string 001.

Figure 4: A DFA which accepts only the string 00.
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Figure 5: A DFA which accepts only the string 01.

3 Determining Equivalence of Finite Automata

3.1 Equivalence to Grade Assignments

The process of grading a student’s assignment is essentially the process of deter-
mining if the DFA or NFA they submitted is equivalent to the correct answer.
Although student examples of finite automata will tend to have a small n, where
n is the number of states in the automaton, it is still desirable to use an efficient
algorithm to grade the answers. The same code could then be used to handle
larger cases. Moreover, even small cases may run slowly if part of the algorithm
takes exponential time in n; for example, the subset construction may be a good
thing to avoid if it is not needed. Several different algorithms will be considered
below.

In an article about their Python tool called FAdo (for “Finite Automata
devoted oracle”), Moreira and Reis stress the importance of being able to correct
students’ answers immediately to help them to learn. They use an unusual DFA
“canonical form” in their program to test equivalence (via isomorphism) in what
they consider linear time:

“we can minimise the two automata and verify if the two minimised
DFA’s are isomorphic (i.e are the same up to renaming of states).
For verify isomorphism we developed a canonical form for DFA’s.
Given a DFA we can obtain a unique string that represents it. Let
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Σ be ordered (p.e, lexicographically), the set of states is reordered in
the following manner: the initial state is the first state; following Σ
order, visit the states reachable from initial state in one transition,
and if a state was not yet visited, give it the next number; repeat the
last step for the second state, third state, ...until the number of the
current state is the total number of states in the new order. For each
state, a list of the states visited from it is made and a list of these
lists is constructed. The list of final states is appended to that list.
The result is a canonical form. If a DFA is minimal, the alphabet
and its canonical form uniquely represent a regular language. For
test of equivalence it is only needed to check whether the alphabets
and the canonical forms are the same, thus having linear costing
time.” ( [23], p. 336, sic)

However, note that the total time is not truly linear. The linear cost is
actually in addition to the time it takes to first minimize the DFAs. NFAs
would need to be converted to (minimized) DFAs for this to work. (Moreover,
better algorithms are available for testing graph isomorphism of DFAs. For
instance, the DFAEqualityChecker in JFLAP does not require conversion to a
canonical form.) This is not the best choice of algorithm to use. Perhaps a more
interesting approach is that when the student answers a question incorrectly,
Moreira and Reis suggest and implement a way to provide detailed feedback
to the student using what they call “witnesses,” or strings which are in one
language but not in the other:

“Instead of a simple statement that an answer is wrong, we can
exhibit a word that belongs to the language of the solution, but not
to the language of the answer (or vice-versa). A witness of a DFA,
can be obtained by finding a path from the initial state to some final
state. If no witness is found, the DFA accepts the empty language.
Given A and B two DFA’s, if ¬A ∩ B or A ∩ ¬B have a witness
then A and B are not equivalent. If both DFA’s accept the empty
language, A and B are equivalent.” ( [23], p. 336, sic)

It is very helpful to the student if they can see examples showing why their
automaton needs to be corrected.

3.2 Converting NFAs to DFAs: The Subset Construction

It is generally necessary to convert an NFA to DFA format before checking
equivalence of automata, since the algorithms discussed below only accept DFAs
as input. The standard algorithm for conversion from an NFA to a DFA is called
the “subset construction.” The idea is to identify the set of possible states which
the NFA can transition to on a single input, and to turn this set into a single
state in the DFA. The resulting DFA can be much larger than the NFA; if Q is
the set of states in the original NFA, the power set P (Q) is of size 2‖Q‖, so the
DFA may contain up to 2‖Q‖ states. Since this is an exponentially larger number
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Figure 6: An NFA which accepts ab + (a(aa)∗).

of states, we only construct those states which are actually accessible (reachable
on some input from the start state). Hopcroft, Motwani, and Ullman argue that
“the DFA in practice has about as many states as the NFA, although it often
has more transitions [because a transition must exist for every input symbol
for every state in the DFA]. . . We often can avoid the exponential-time step
of constructing transition-table entries for every subset of states if we perform
‘lazy evaluation’ on the subsets” ( [16], pp. 60-62), so the runtime may not
necessarily be exponential unless we approach the worst case. (Lazy evaluation

is a programming strategy where objects are not created and values are not
calculated until they are actually required for use by the algorithm. This can
potentially reduce both memory requirements and runtime.)

Here is a simple example of how the subset construction process works. Fig-
ure 6 shows an NFA which accepts the string ab as well as strings which consist
of an odd number of a symbols, such as {a, aaa, aaaaa, . . .}. This automaton
is clearly nondeterministic because two different transitions exit state q0 on the
same symbol, a. The alphabet Σ = {a, b}. The DFA will use the same alphabet
as the NFA. Set the DFA start state equal to the set {q0} – there is only one
possible initial state of the NFA. Then, on input a, we can move to (guess)
either of two different NFA states, so we construct the next DFA state using
the set {q1, q2} and add the a transition to it, coming from the start state. See
Figure 7.

Although JFLAP does not require it, note that the strict definition for DFAs
requires that a transition be defined for every input symbol of the alphabet on
every state. Therefore, since transitions do not exist from a given set of NFA
states (such as {q0} here) on some input symbol (b), we create a non-accepting
dead state ∅ = {} in the corresponding DFA and transition to this state on b.
Since the symbol ∅ is not available in JFLAP, the dead state is labelled qphi in
the diagram. Note that the new JFLAP version 6.4 calls this a trap state. To
make the trap state “dead,” all transitions out of ∅ loop right back into ∅, so
no string will be accepted once this state has been reached. (Observe that if we
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Figure 7: The DFA produced by the subset construction on the NFA in Figure 6.

were not taking a ‘lazy evaluation’ approach to create states, a state for the set
∅ would be created automatically since it is an element of the power set of the
states of the NFA.)

At this point, we have processed all transitions exiting the start state. The
next step is to track each state we have added to the DFA and continue to loop
through them to process each possible transition. So far, the only new state
(other than the dead state) is {q1, q2}. We try each letter of the alphabet to
see where it leads in the NFA. Inputting a to the combination of states q1 and
q2 goes only to state q4, so this will appear in the DFA as state {q4}, with an
arrow to it on input a. The input b to states q1 and q2 leads to state q3, and
thus we add {q3} to the DFA and draw the transition.

The next new state that was created for the DFA is {q4}. On input a, q4

goes to q1 in the NFA, so we add a transition on a to a new DFA state {q1}.
On input b, q4 leads nowhere, so a b transition goes from {q4} to ∅ in the DFA.

Next, we process {q3}. Both inputs a and b must lead to ∅.
{q1} is the last state that was added to the DFA. Since the only transition

from q1 in the NFA goes to q4 on a, the DFA goes to the existing state {q4} on
a and to ∅ on b. No more unprocessed DFA states remain.

Finally, a state in the DFA is accepting iff it includes at least one accepting
NFA state. The accepting NFA states are q1 and q3, so the three accepting
DFA states are {q1}, {q1, q2} and {q3}, as shown by the double circles in the
diagram. The DFA is now complete.

The detailed algorithm is as follows. This is based on the description in
Hopcroft, Motwani, and Ullman ( [16], pp. 60-66), but it originated from M.O.
Rabin and D. Scott [24].
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1. On input N , where N is an NFA, to create an equivalent DFA D =
(QD, Σ, δD, q0D , FD):

2. Set the alphabet Σ for D equal to the original alphabet of N .

3. Create an empty table for the new transition function δD, where the
columns are the symbols of Σ and the rows will be the new states.

4. Set the DFA start state q0D equal to {q0}, where q0 is the start state of
N .

5. Create a queue and add q0D to it.

6. Until the queue is empty (i.e., until no more new states are added to D):

(a) Get a DFA state p (a set of NFA states) from the queue.

(b) For each input symbol a in the alphabet:

i. Find the set of successor states r =
⋃

t∈p δN (t, a), where δN is
the transition function of NFA N and p is viewed as a collection
of NFA states.

A. If r is not already a state in D, then add it to the queue.
(Note that if r = ∅ because transitions do not exist for input
symbol a, then r will become a dead state whose exiting
transitions will only lead back to itself.)

ii. Add this set of states r as an entry to the δD table for input a
coming from state p, since δD(p, a) = r.

(c) Delete p from the queue.

7. The set of states QD in D equals the set of row headers in the δD table.

8. Initialize the DFA’s set of final states, FD , to the empty set.

9. Scan through QD and add any state containing at least one accepting
state of N to FD .

The time complexity of this algorithm is dominated by the loop in step 6.
Let n be the number of states in the original NFA N . Since up to 2n states
may be added to D, and hence to the queue, the loop may be run up to 2n

times. The inner loop in step 6(b) is run once for each symbol in the alphabet,
and we assume that the alphabet is of constant size, so this can be disregarded
for purposes of calculating complexity. In step 6(b)i, which is essentially also a
loop, the NFA transition function δN is calculated for every state in the “set”
p of NFA states (a single DFA state). This will multiply our complexity by n2:
First, note that p could contain anywhere from 1 to n NFA states. Technically,
for each alphabet symbol, p would only include all n states once at most, since
p is a distinct subset of the states of N in each iteration of the loop, and there is
only one subset containing all n states. Most iterations will contain fewer than n
states. Second, for each state in p we have to actually calculate δN , and we may

13



have to follow up to a maximum of n transitions each time. Therefore, taking
these two factors of n into account, a loose upper bound on the complexity for
the subset construction is O(n22n). This is terribly slow; however, this does not
represent the typical case. Because of the fact that only one state contains all n
of the NFA states, this bound will not (quite) be achieved. Moreover, the lazy
evaluation may help to reduce the critical exponential factor.

For the sake of simplicity, the algorithms in this discussion generally assume
that the NFAs do not contain ε transitions, but it is not difficult to accommodate
them. (The JFLAP software does allow ε transitions, but they are typed in using
the “!” key. By default, they are labeled as λ transitions, but the setting can
be changed so that transitions say ε instead of λ.) For example, in the subset
construction pseudocode above, it would only be necessary to make two changes
to handle ε. First, set the DFA start state q0D equal to the union of {q0} and
the full set of all states reachable from q0 on the empty string (including all
states reachable by following multiple transitions on ε), where q0 is the start
state of N . Second, in the spot where r is specified in the loop, if there are ε
transitions exiting any of the states in r, then all of the states reachable on ε
(including their successors on ε) must also be added to r. Formally, to make
both of these changes, we require the “epsilon-closure” of state q, ECLOSE(q).
This set is recursively defined to include all states reachable from q on zero or
more ε transitions:

Basis: q ∈ ECLOSE(q).

Induction: If state u ∈ ECLOSE(q) and v ∈ δ(u, ε), then v ∈ ECLOSE(q).

Thus, q0D in our algorithm above simply becomes ECLOSE(q0). Similarly,
to determine r, define a temporary variable R =

⋃
t∈p δN (t, a) and then we get

r =
⋃

ri∈R ECLOSE(ri).
This does add to the time complexity of the algorithm, since the amount of

work to obtain ECLOSE(q) depends not only upon the number of ε transitions
exiting q itself, but also upon the number of ε transitions exiting each state which
is reached and then recursively checked to see if even more neighbors should be
included. In other words, the runtime to determine ECLOSE(q) is impacted
by the total number of states which are reached, whether they are immediate
neighbors of q or must be reached by increasing the depth of recursion. Clearly,
one upper bound on the potential size of ECLOSE(q) is n, the total number of
states in the NFA. Another upper bound would be dictated by the total number
of ε transitions in the NFA; after visiting q, we cannot possibly add more states
to ECLOSE(q) than there are total ε transitions. So the maximum feasible
depth of recursion equals the number of ε transitions. In the worst case where
each state leads to exactly one brand new state, this would be up to at most n
states. When implementing this algorithm for large automata, a lookup table
of the states reachable on input ε could speed things along; if δN was already
represented as a table, just use the ε entries in that table for quick reference.
To keep the runtime reasonable, it would also be desirable to stop the recursion
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upon encountering a state which was already added to ECLOSE(q) previously.
Possible pseudocode to determine ECLOSE(q):

1. On input N , where N is an NFA containing epsilon transitions, and input
q, where q is a state in N :

2. Create a set ECLOSE(q) and add q to it.

3. Create a queue and place q on the queue.

4. Until the queue is empty:

(a) Get a state u from the queue and delete it from the queue.

(b) Look up the set of states δN (u, ε) from the transition table. For each
state v ∈ δN (u, ε):

i. If v /∈ ECLOSE(q): add v to ECLOSE(q) and also to the
queue.

5. Output ECLOSE(q).

It is not necessarily feasible to do this within linear O(n) time, despite the
transition function lookup table, because each state v which is encountered must
be processed; each v must at least be checked to see if it has been encountered
before. In the absolute worst case, if every state had an ε transition to every
other state, n items would be dequeued, and n states v would be found each time,
giving an O(n2) runtime for this function. The subset construction without ε
transitions was estimated to be O(n22n). We may have to do the O(n2) epsilon
closure up to n times for each loop, so this multiplies the complexity by n3.
Thus, the overall loose bound for the subset construction increases to O(n52n)
if ε transitions are present.

3.2.1 The Reversing Minimization Algorithm

In a chapter on “Regular Languages,” Sheng Yu discusses minimization of a
DFA using reversal with subset construction [37]. The reversal of input string
w is denoted wR, where wR consists of the same symbols as w, but in the
opposite order. For example, if w is the string 110, then wR would be 011. If
L is the language of strings accepted by DFA A, then LR = {wR | w ∈ L}.
Yu states, “An interesting observation is that, for a given DFA, if we construct
an NFA that is the reversal of the given DFA and then transform it to a DFA
by the standard subset construction technique (constructing only those states
that are reachable from the new starting state), then the resulting DFA is a
minimum-state DFA.” (p. 57) Hing Leung gives a clear, simple version of the
same proof for this theorem as follows [22]. The input is a reduced DFA A, (Q,
Σ, δ, q0, F ), where “reduced” means that all unreachable states have already
been removed. Leung defines Lq = {w | δ(q, w) ∈ F} where q ∈ Q, and specifies
that states p and q are “mergeable” (equivalent) if the languages accepted by
these states are equivalent, meaning Lp = Lq . To get the reverse of A, the
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arrows for the transitions are reversed, the initial state becomes the final state,
and the final states become initial states. Notice that this is not an ordinary
NFA, because there may be multiple initial states. Yu calls it an “NNFA,” for
“NFA with nondeterministic starting state,” p. 15. Clearly, this NNFA will
accept the reverse of the strings accepted by A. The final step is to perform the
subset construction on the NNFA, leaving out unreachable subsets, to create
DFA B. To prove that B is minimal, Leung shows that no two states in B are
equivalent, so no more states can be merged together. Specifically, let Q1 and
Q2 be two states in B. These are actually subsets of states in A. Choose some
state q ∈ Q1 where q /∈ Q2. This is always possible because Q1 and Q2 are
never identical subsets in the subset construction algorithm. Since there are no
unreachable states in A, there exists a string w which goes from initial state q0

to this state q. Since A is a DFA, this is the ONLY state which is reached on
input w. Therefore, w ∈ LQ1, but w /∈ LQ2. Since these languages LQ1 and
LQ2 differ, no two states Q1 and Q2 in B are equivalent. Thus, no two states
in B can be merged together, and B must be minimal.

Yu describes a commonly known minimization algorithm (originally by Br-
zozowski), which makes use of this theorem. The algorithm simply performs
the process twice: If you reverse DFA A, apply the subset construction to get
minimal DFA B as described above, reverse again, and apply the subset con-
struction again, then the final result A′ is a minimal DFA equivalent to A. This
is because (wR)R = w. Yu points out that “The algorithm is descriptively very
simple. However, the time and space complexities of the algorithm are very
high; they are both on the order of 2n in the worst case, where n is the number
of states [in the original DFA]” (p. 58). Because of the subset construction,
this is an expensive minimization algorithm. Better options are available. We
will see some of these options later as we discuss equivalence-testing algorithms
which also minimize DFAs.

3.3 Equivalence-Testing Algorithms

This section describes some of the most significant algorithms for determining
the equivalence of finite automata and discusses their complexity. For example,
one of these algorithms uses the symmetric difference to check if there are any
strings which one automaton accepts and the other does not. Often, minimiza-
tion algorithms can also be used for purposes of testing if two DFAs recognize
the same language. For instance, Hopcroft, Motwani, and Ullman present a
“table-filling” algorithm to test if two DFAs are equivalent. Where n is the
total number of states in the two DFAs, they show that their algorithm runs in
O(n4) time, or in O(n2) time if lists of states depending on distinguishable states
are tracked and labeled as distinguishable (p. 159). Hopcroft also published an
O(n lg n) algorithm which can be used to minimize or to show equivalence.
Moreover, Hopcroft and Karp provide an algorithm which can be used if equiv-
alence is to be tested without doing any work to minimize the automata; it can
run in very nearly linear time on n. Each of these algorithms is discussed in more
detail below, and the existing JFLAP algorithms are described for purposes of
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comparison.
As an interesting side note, Ravikumar and Eisman define the concept of

weak equivalence, where “two DFA’s are weakly equivalent if they both accept
the same number of strings of length k for every k.”( [25], p. 115) They provide
an algorithm to determine weak equivalence and suggest that it can be helpful
in solving counting problems. Moreover, Watson and Daiciuk [36] suggest
that it may be useful to employ a DFA minimization algorithm which provides
partial (incremental) results, even it is not run to completion. However, for
our purposes, we will focus on proving DFA equivalence, and we will only take
shortcuts in cases where the equivalence proof is already known to be complete.

3.3.1 Symmetric Difference with Emptiness Testing

It is well known that the problem of determining whether or not two DFAs accept
the same language is decidable. See, e.g., Sipser’s chapter on “Decidability,”
Theorem 4.5, ( [29] p. 155): EQDFA is decidable, where EQDFA = {(A, B) |
A and B are DFAs and L(A) = L(B)}. The proof of this theorem can be used
as an algorithm to test equivalence of DFAs. (BFLAP takes this approach for
grading students’ automata [21]. See the section on BFLAP below.)

The idea is to find out if there are any strings that are accepted by A and not
by B. Similarly, check if B accepts any strings which A does not. If the result
in both cases is the empty set, then A and B must be equivalent. Otherwise,
they cannot be equivalent. To do this, we take the symmetric difference to form
DFA C such that

L(C) = (L(A)− L(B)) ∪ (L(B)− L(A)) (1)

= (L(A) ∩ L(B)) ∪ (L(B) ∩ L(A)) (2)

where

• The DFA AC for the complement of L(A), L(A), is constructed by swap-
ping the accepting and non-accepting states of DFA A. AC will then
accept everything in Σ∗ which A does not, and vice versa.

• The union of two DFAs D1 and D2 is formed by taking the Cartesian
product of the states in D1 with the states in D2, and then adjusting the
transition function, start state, etc. so that both DFAs can be simulated
simultaneously in a single automaton which will accept L(D1) ∪ L(D2)
(see, e.g., Sipser, p. 46, to be discussed in a moment).

• One way to find the intersection is by using the complement and union; via
De Morgan’s law, L(A) ∩ L(B) = L(B)∪L(A). Therefore, L(A)∩L(B) =

(L(B) ∪ L(A)). However, an easier way to get the intersection is to use
the same algorithm as for the union (below), but with a restricted set of
accepting states.

Then L(C) is tested for emptiness. A and B are equivalent iff C does not
recognize any strings. (Otherwise, L(C) is the language of all possible witnesses
demonstrating why A and B are not equivalent.)

17



Here is the procedure for creating the union of two regular languages by
simulating both DFAs at the same time (Sipser mentions this method, [29] pp.
45-46). Call the two DFAs D1 and D2. Since we are taking the Cartesian
product of the states, the number of states in resulting DFA D will be the
product of the number of states in D1 and the number of states in D2.

1. On input (D1, D2), where the DFAs D1 = (Q1, Σ, δ1, q01, F1) and D2 =
(Q2, Σ, δ2, q02, F2), create D = D1 ∪D2 as follows:

2. The set of states for D consists of pairs Q = {(r1, r2) | r1 ∈ Q1 and
r2 ∈ Q2}.

3. The alphabet for D is still Σ.

4. For each (r1, r2) ∈ Q and a ∈ Σ, the transition function δ becomes
δ((r1, r2), a) = (δ1(r1, a), δ2(r2, a)).

5. The start state q0 for D is (q01, q02).

6. The set of accepting states for D is F = {(r1, r2) | r1 ∈ F1 or r2 ∈ F2}.
Iff either of the automata accept a string, it will be accepted by D and
hence is included in L(D).

To form the intersection instead of the union, just change the accepting
states of D to be only those states in which both r1 and r2 are accepting. In
other words, F = {(r1, r2) | r1 ∈ F1 and r2 ∈ F2} for the intersection.

To test L(C) for emptiness, Sipser uses a commonly known, simple reach-
ability algorithm ( [29], p. 154). It begins by marking the start state of C. It
then follows the transitions out of each marked state, and tracks and marks
any new unmarked states as they are encountered. When no more states can
be marked, the algorithm halts. If (and only if) the set of marked states does
not include any accepting states, then C represents the empty language, i.e.,
it does not accept any strings because no accepting states are reachable from
the start state. Sipser does not specify how the marked states should be visited
or tracked. One way to implement this would be to add newly marked states
to a “marked” list, so that we would know which ones were reached so far.
Each newly marked state could also be added to the end of a processing queue.
They would be removed from the queue one by one as their successor states
were checked to see if they still needed to be marked and queued (essentially a
breadth-first approach). This way, each state would only need to be considered
once, at most. Although all transitions from each state would need to be eval-
uated, the number of transitions per state is a constant equal to the number of
alphabet symbols (we are looking at DFAs here, not NFAs), so the complexity
would be O(n) to mark up to n states. This assumes the DFA is represented
in a manner that requires only constant time to find the next state; a lookup
table for δ would work. It would also only take linear O(n) time to scan the
completed list of marked states to determine if any were accepting, or not.
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As we will see, JFLAP also uses a reachability algorithm for a different pur-
pose; namely, to detect useless states. Any unreachable states (accepting or
not) can safely be eliminated from an automaton since they are not necessary
to specify the language which the automaton accepts. This preliminary mini-
mization step can cut down on storage space and/or extraneous calculations. It
has the potential to make a noticeable improvement on runtime if it is executed
before an expensive algorithm such as the subset construction. Also, for iso-
morphism checking algorithms, it is important that any unreachable states first
be removed. This assures that the DFA is truly minimal, and therefore unique
for a given language.

3.3.2 The Table-Filling Algorithm

Students of computer science theory are often familiar with the table-filling
algorithm, as it is effective and easy to understand. It can be used both for pur-
poses of minimizing a DFA and for checking equivalence of two DFAs. Hopcroft,
Motwani, and Ullman describe it in their Introduction to Automata Theory,

Languages, and Computation, section 4.4 (pp. 154 - 164).
This algorithm can be used on a single DFA to minimize it. However, to

test equivalence, two DFAs are treated almost as if they were a single DFA.
The strategy here is to look at all of the states for both DFAs, and to identify
states which are distinguishable on some input. As distinguishable states are
found, they can be used to identify more distinguishable states: if some input
to a pair of states results in a transition to two distinguishable states, then
the pair is itself distinguishable. Note that we assume that the names of the
states in the two automata are distinct, so that the transition function δ is
simply the combination of the transition functions for the two automata. Once
the algorithm is completed, if the start states of the two DFAs are still not
distinguishable, then these DFAs accept the same language, and thus they are
equivalent.

To start with an example, let us test the DFAs in Figures 8 and 9 for equiv-
alence. (We saw these earlier, in Figures 4 and 5.) The first step is to draw a
table listing all of the states for both automata, as shown in Figure 10. We only
need the lower half of the table since each state only needs to be compared once
against each of the other states. All entries where one state is accepting and
the other is not are immediately marked with an ‘X.’ Here, the states qc and qg

are marked as distinguishable from everything except for each other, since they
are the only final states.

Next, we loop through the unmarked pairs of states. We test each input on
each member of the pair to see what new pair they will lead to. If they lead to a
marked pair on either input 0 or 1, then the original pair is also distinguishable
and must be marked. This looping process is repeated until no more pairs can
be marked. Starting with (qa, qb) on input 0, the diagram shows that qa goes
to qb and qb goes to qc. Pair (qb, qc) is already marked, so (qa, qb) must now be
marked. The next unmarked pair in that column is (qa, qd). On input 0, this
leads to (qb, qd), which is currently unmarked. So we try input 1, and this goes
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Figure 8: A DFA which accepts only the string 00.

to (qd, qd), but qd is not distinguishable from itself, so we cannot mark (qa, qd)
at this time, and we move on to the next pair. (qa, qe) goes to (qb, qf ) on input
0 and to (qd, qh) on input 1. So far, neither of these are marked. Continuing
onwards, when we look at pair (qa, qf ) and try input 1, (qd, qg) is marked, so
(qa, qf ) gets marked. (qa, qh) does not get marked at this stage. (qb, qd) goes to
(qc, qd) on input 0, so it is now marked. (qb, qe) goes to (qc, qf ) on 0 and hence
is distinguishable. (qb, qf ) leads to (qc, qh) and so is also marked on 0. The
reader can verify that the next pairs to be distinguished are: (qb, qh), (qd, qf ),
(qe, qf ), and (qf , qh). Then we take a second pass through the table. (qa, qd)
is now distinguishable on 0 since (qb, qd) has been marked. (qa, qe) is similarly
distinguishable since (qb, qf ) was marked. If we just wanted to prove that the
two DFAs are inequivalent, we could stop the algorithm here, since qa and qe

are the start states. See Figure 11. Otherwise, we can go on to mark (qa, qh),
(qd, qe), and (qe, qh). Then, in the third pass, there are only two remaining
pairs. We find that (qc, qg) still cannot be marked. (These states always lead
to dead states). Since (qd, qh) also cannot be marked (they are the dead states
and only lead to themselves), nothing else has changed on this pass through the
table, and the algorithm is done. Refer to Figure 12.

The pseudocode is as follows:

1. On input (M1, M2), where M1 and M2 are DFAs, NFAs, and/or regular
expressions:

2. Convert M1 and M2 to DFA format, if necessary.
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Figure 9: A DFA which accepts only the string 01.

Figure 10: Initial Table for the Table-Filling Algorithm.
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Figure 11: Partially Filled: qa and qe are not equivalent.

Figure 12: Completed Table for the Table-Filling Algorithm.
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3. Construct an n×n matrix with a row for each state and a column for each
state, where n is the sum of the number of states in M1 and the number
of states in M2. Only the area below the diagonal of the matrix needs to
be considered.

4. Mark each entry in this table as distinguishable if one of the states is
accepting and the other is not. (This is because on input ε, one state
accepts, and the other rejects, so they do not accept the same set of
strings.)

5. Loop until no additional pairs of states are marked as distinguishable:

(a) For each pair of states {p, q} that is not yet marked distinguishable:

i. For each input symbol ai in the alphabet as long as {p, q} is not
yet marked distinguishable:

A. If the pair of states {δ(p, ai), δ(q, ai)} is distinguishable, then
mark {p, q} as distinguishable.

6. If the start states of the two DFAs are marked as distinguishable, then
M1 and M2 are not equivalent. Otherwise, they are equivalent.

Hopcroft et al. show that if the inputs are already DFAs, the time complexity
of this algorithm is O(n4), where n is the sum of the number of states in the
two DFAs, and the number of input symbols in the alphabet is assumed to be
a constant. Specifically, there are (n

2
) = n(n − 1)/2 pairs of states, so it takes

O(n2) time to loop through each pair on line 5(a) of the algorithm. In each
outer loop on line 5, at least one more pair must be marked distinguishable,
or the algorithm stops, so no more than O(n2) outer loops will be performed.
The result of the multiplication is O(n4). This is a maximum because pairs of
states will be eliminated as the algorithm continues. The time for step 4 can be
disregarded because it is only a single O(n2) loop.

The authors also show that the run time can be reduced to O(n2) by listing
pairs of states that depend on each other. In other words, we track which pairs
of states lead to other pairs of states via the transition function, δ, on a single
input symbol. Then we will only have to test each pair once to fill the table.

Going back to rework our previous example of Figures 8 and 9, we begin by
creating the lists of predecessors for each pair. For conciseness, pairs without
predecessors are omitted below; for instance, there are no predecessors for any
pair containing a start state (states qa or qe), so they have an empty list. Du-
plicates need not be saved if the same pair is a predecessor on both inputs 0
and 1.

(qb, qc): (qa, qb)

(qb, qd): (qa, qc), (qa, qd)

(qb, qf ): (qa, qe)
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(qb, qh): (qa, qf ), (qa, qg), (qa, qh)

(qc, qd): (qb, qc), (qb, qd)

(qc, qf ): (qb, qe)

(qc, qh): (qb, qf ), (qb, qg), (qb, qh)

(qd, qf ): (qe, qc), (qe, qd)

(qd, qg): (qa, qf ), (qb, qf ), (qc, qf ), (qd, qf )

(qd, qh): (qc, qf ), (qc, qg), (qc, qh), (qd, qf ), (qd, qg), (qd, qh), (qa, qe), (qb, qe),
(qc, qe), (qd, qe), (qa, qg), (qb, qg), (qa, qh), (qb, qh)

(qf , qh): (qe, qf ), (qe, qg), (qe, qh)

(qg , qh): (qf , qe), (qf , qg), (qf , qh)

Then create the table, as before in Figure 10, with accepting/non-accepting
pairs immediately marked. However, this time, also add these pairs to a pro-
cessing queue. The queue should now contain 12 entries:

(qa, qc), (qb, qc), (qc, qd), (qc, qe), (qc, qf ), (qc, qh), (qa, qg), (qb, qg), (qd, qg),
(qe, qg), (qf , qg), (qg , qh).

The next step is to go through the queue. For each pair in the queue, any
unmarked pairs in its list are marked and added to the end of the queue. If
we take the queue in the same order as above, (qa, qc) has an empty list (no
predecessors), so nothing gets marked. (qb, qc) is the next item on the queue, and
it has the unmarked predecessor (qa, qb). Mark (qa, qb) and add it to the queue.
Continuing with (qc, qd), it has two items in its list. (qb, qc) has already been
distinguished, but (qb, qd) has not, so this pair is marked and queued. . . . And
so forth. This process ends when nothing unprocessed remains on the queue.
Although the order of marking will differ from that in the previous algorithm,
the end result will still be the same as Figure 12. Since the slot in the table for
the start states qa and qe is marked, the two DFAs are not equivalent.

The pseudocode for this approach would be as follows:

1. On input (M1, M2), where M1 and M2 are DFAs, NFAs, and/or regular
expressions:

2. Convert M1 and M2 to DFA format, if necessary.

3. Create (read-only) lists of predecessor states. Specifically, for each pair of
states {p, q}:

(a) For each input symbol ai in the alphabet:

i. Add {p, q} to the list for pair {δ(p, ai), δ(q, ai)}, to track the
dependency.
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4. Construct an n × n matrix with a row for each state and a column for
each state, where n is the sum of the number of states in the two DFAs.
Only the area below the diagonal of the matrix needs to be considered.

5. Mark each entry in this table as distinguishable if one of the states is
accepting and the other is not. Create a processing queue, and add each
distinguishable pair to this queue.

6. While there are pairs in the queue, get the list for the next pair.

(a) For each pair {r, s} on this list not yet marked distinguishable:

i. Mark {r, s} as distinguishable in the table.

ii. Add {r, s} to the queue.

7. If the start states of the two DFAs are marked as distinguishable, then
M1 and M2 are not equivalent. Otherwise, they are equivalent.

Assuming M1 and M2 are already DFAs, the time complexity will be just
O(n2) for the loop in step 3 to create the lists (since there are still O(n2) pairs
of states, and the number of input symbols is assumed constant), plus O(n2)
to find the initial accepting/non-accepting combinations in a single loop in step
5, plus another O(n2) to process step 6. Note that step 6 is a nested loop, but
each pair will only be queued and processed at most once. This results in a sum
total polynomial time of O(n2). The only additional cost versus the previous
algorithm is the creation of a set containing up to (n

2 ) lists, plus a queue.
As we will see, if the two DFAs do not recognize the same language, it is

relatively easy to modify the table-filling algorithm(s) to produce a string which
is accepted by one DFA but not by the other.

What if you wanted to use this algorithm on a single DFA to minimize it?
Obviously, it would only be necessary to incorporate the states from that partic-
ular DFA in the table. Then, by looking through the completed table, it is easy
to pick out the groups of states which are not marked as distinguishable. These
table-filling algorithms can thus be viewed as “partitioning” algorithms; they
essentially partition the states into groups (sets) which have been determined to
contain only equivalent states. Minimization would simply require combining
each set of states in the partition into a single state. (Any unreachable sets
would need to be removed.)

3.3.3 The O(n4) Table-Filling Algorithm, with Witness

What if a fast equivalence-checking algorithm is desired, but the user would like
to have an example of an input string which differentiates the two automata? For
instance, what if a student who is using JFLAP needs clarification to understand
why two DFAs do not accept the same language? As part of this project, the
Hopcroft n lg n algorithm and a near-linear algorithm (discussed later) were
modified and implemented to produce a witness string which is accepted by one
DFA, but not by the other. However, for purposes of comparison, let’s suggest
a way to modify the table-filling algorithms to produce a witness string first.
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Figure 13: Initial Table for the Table-Filling Algorithm with Witness.

Consider the simplest form of the standard O(n4) table-filling algorithm.
Ordinarily, the table is populated with an ‘X’ or some similar flag to indicate
that a pair of states was found to be distinguishable. However, we can instead
track the actual input symbol which was used to distinguish each pair of states.
Then, after the table has been completed, we can work backwards from the
table using the transition function δ to construct the witness.

Figures 13 through 15 show what our previous example from Figures 4 and 5
would look like with the witness incorporated. In Figure 13, the table is ini-
tialized with ε in the entries where one state is accepting and the other is not;
these states are distinguishable on the empty string. Next, we loop through the
unmarked pairs of states until no more pairs can be marked, as before. The first
pair, (qa, qb), leads to marked pair (qb, qc) on input 0, so it is now marked with
a 0 in the table. Continuing down that column, (qa, qd) cannot be marked yet,
nor can (qa, qe). The next pair is (qa, qf ), which goes to marked states (qd, qg)
on input 1, so a 1 is added to the table, and so forth. Figure 14 shows what the
result looks like if we pause the algorithm when the start states are shown to
be inequivalent. Figure 15 displays the completed table.

The table can then be used to formulate a witness string. Begin with the
start states, (qa, qe). The corresponding symbol in the table is 0, so that is the
beginning of the witness. The next state pair is calculated as (δ(qa, 0), δ(qe, 0)),
which is (qb, qf ). The table entry for (qb, qf ) is 0, so we append this to the end
of the witness, which now becomes 00. Compute (δ(qb, 0), δ(qf , 0)) to obtain
(qc, qh). Since qc is a final state and qh is not, they are distinguishable on the
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Figure 14: Partially Filled: qa and qe are not equivalent.

Figure 15: Completed Table for the Table-Filling Algorithm with Witness.
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empty string, and the witness 00 is complete. One automaton accepts 00, and
the other does not. Notice that 01 would also be an acceptable solution for this
example, depending on the order in which the inequivalent states are found and
marked.

The pseudocode for this new algorithm would be:

1. On input (M1, M2), where M1 and M2 are DFAs, NFAs, and/or regular
expressions:

2. Convert M1 and M2 to DFA format, if necessary.

3. Construct an n×n matrix with a row for each state and a column for each
state, where n is the sum of the number of states in M1 and the number
of states in M2. Only the area below the diagonal of the matrix needs to
be considered.

4. Mark each entry in this table with an ε if one of the states is accepting
and the other is not. (This is because on input ε, one state accepts, and
the other rejects, so they do not accept the same set of strings.)

5. Loop until no additional pairs of states are marked as distinguishable:

(a) For each pair of states {p, q} that is not yet marked distinguishable:

i. For each input symbol ai in the alphabet as long as {p, q} is not
yet marked distinguishable:

A. If the pair of states {δ(p, ai), δ(q, ai)} is distinguishable, then
mark {p, q} as distinguishable by entering the symbol ai in
the table.

6. If the start states of the two DFAs are not marked as distinguishable, then
M1 and M2 are equivalent. Output “equivalent, no witness” and halt.

7. Otherwise, the automata are not equivalent. To form the witness string,

(a) Initialize the witness to the empty string.

(b) Look up the table entry a for the two start states. Call these states
pw and qw.

(c) Until one of the states pw and qw is a final state and the other is not:

i. Append the symbol a to the end of the witness.

ii. Set pw = δ(pw, a) and qw = δ(qw, a).

iii. Set a to the table entry for the new pw and qw.

(d) Output the witness.

The runtime is still O(n4) for table-filling. We are constructing exactly the
same table as before, just with different symbols as entries. (To save time, the
algorithm could stop filling the table as soon as it completes an entry for the
two start states.) However, as an additional procedure, the witness must now
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be formed. Since the table is of size O(n2), is the time to create the witness
after that O(n2) or smaller? Or is it possible to wind up in an infinite loop?
Notice that this algorithm could have symbols entered in any order – and unlike
the modified Hopcroft witness algorithm discussed below, we may encounter the
same pair {p, q} more than once as we fill the table – but this will not cause a
problem. Observe that only the first symbol will be saved in the table for any
given pair of states. To demonstrate that it can be used to construct a valid,
non-infinite witness string, recall the starting point to distinguish states: we
identify and mark states which are accepting vs. those which are non-accepting.
As the program continues, no symbol is entered in the table unless transitions
on that symbol were found to lead to an accepting/non-accepting pair of states.
Therefore, when the witness is built by tracing these symbols in reverse via
the transition function δ, it must ultimately lead back to an accepting/non-
accepting pair. This means that the current string is accepted by one DFA, but
not by the other. Therefore, the witness string is complete, and the program
will halt. The runtime to produce the witness will not be longer than the length
of the string, and since there are O(n2) entries in the table and we do not repeat
configurations (because that would imply an infinite loop), O(n2) is definitely
a limit on the runtime. However, this can be tightened up to O(n1 ∗ n2) rather
than O(n2), where n1 is the number of states in the first DFA, n2 is the number
of states in the second, and n is their sum. The reason for this is that the table
entries for states from the same DFA will be ignored in the loop which produces
the witness. It calculates δ(pw, a) and δ(qw, a) only for cases where pw is from
one DFA and qw is from the other.

Overall, the total runtime is therefore still O(n4). Moreover, the amount of
storage space remains exactly the same as the original table-filling algorithm
because it uses exactly the same table structure. It may be useful to save the
witness as an additional string, but even that is not strictly necessary because
the symbols in the string could be outputted as they are encountered in the
final loop. In the next section, let us try to speed up the algorithm.

3.3.4 The Faster O(n2) Table-Filling Algorithm, with Witness

If we are willing to use a little more storage space, the O(n2) table-filling algo-
rithm can also be tweaked to create a witness. The idea is the same as the basic
O(n2) algorithm, but the lists of predecessor states must now incorporate the
distinguishing symbol ai as they are saved. The procedure to create the witness
itself is identical to the procedure in the previous section. This yields a total
runtime of O(n2) plus O(n1 ∗ n2), or just O(n2). (Again, n1 is the number of
states in the first DFA, n2 is the number of states in the second, and n is their
sum.) This is how the algorithm now looks:

1. On input (M1, M2), where M1 and M2 are DFAs, NFAs, and/or regular
expressions:

2. Convert M1 and M2 to DFA format, if necessary.
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3. Create (read-only) lists of predecessor states. Specifically, for each pair of
states {p, q}:

(a) For each input symbol ai in the alphabet:

i. Add {p, q, ai} to the list for pair {δ(p, ai), δ(q, ai)}, to track the
dependency.

4. Construct an n × n matrix with a row for each state and a column for
each state, where n is the sum of the number of states in the two DFAs.
Only the area below the diagonal of the matrix needs to be considered.

5. Mark each entry in this table with an ε if one of the states is accepting and
the other is not. Create a processing queue, and add each distinguishable
pair of states to this queue.

6. While there are pairs in the queue, get the predecessor list for the next
pair.

(a) For each item {r, s, a} on this predecessor list, if {r, s} is not yet
marked distinguishable:

i. Mark {r, s} as distinguishable by entering the symbol a in the
table.

ii. Add {r, s} to the queue.

7. If the start states of the two DFAs are not marked as distinguishable, then
M1 and M2 are equivalent. Output “equivalent, no witness” and halt.

8. Otherwise, the automata are not equivalent. To form the witness string,

(a) Initialize the witness to the empty string.

(b) Look up the table entry a for the two start states. Call these states
pw and qw.

(c) Until one of the states pw and qw is a final state and the other is not:

i. Append the symbol a to the end of the witness.

ii. Set pw = δ(pw, a) and qw = δ(qw, a).

iii. Set a to the table entry for the new pw and qw.

(d) Output the witness.

A simple shortcut in either of the table-filling algorithms would be to break
out of the marking loop as soon as the pair of start states was marked. This
would not guarantee a shorter runtime, but in many cases, it would help. We
don’t need to worry about the empty slots in the table because they will not
be necessary to form the witness; we already have the distinguishing symbols
we need to create the string. Notice that the witness produced by either of the
table-filling algorithms may not necessarily be the shortest possible candidate.
Before we consider exactly how long this witness string will be, let us look at an
alternative to table-filling, for purposes of comparison. The string length will
be discussed in more detail after modifying the Hopcroft algorithm.
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3.3.5 The n lg n Hopcroft Algorithm

Hopcroft presented an algorithm in 1971 which is still one of the fastest worst-
case approaches to minimizing automata and/or demonstrating equivalence [15].
It runs in time O(n lg n), where n is the total number of states under consid-
eration. (More specifically, the runtime is O(cn lg n), where c is equal to the
number of symbols in the alphabet. Normally, c is considered to be a constant,
and thus disregarded in big-O notation. However, note that experimental evi-
dence [1] suggests that different algorithms may perform better in the average
case for different kinds of DFAs.) This Hopcroft algorithm systematically par-
titions the states into groups which are distinguishable from each other until no
more partitioning is possible. One of the strategies to cut down on the amount
of work required is to use an inverse transition function table, δ−1, to make it
easy to look up predecessor states. This differs from the predecessor lists in
the preceding O(n2) table-filling algorithm because it goes by individual states,
rather than by pairs of states, and the input symbols are tracked by default.

Hopcroft’s explanation of this complicated algorithm is quite brief, so for a
step-by-step introduction to how the pieces fit together, Gries’s article [9], “De-
scribing an Algorithm by Hopcroft,” may be helpful. As Gries says, “a struc-
tured approach to presenting an algorithm seems to be longer and requires more
discussion than the conventional way. If the reader wishes to complain about
this, he is challenged to first read Hopcroft’s original paper and see whether he
can understand it easily. The advantage of our approach will then be clear” (p.
1). Gries also fills in some of the gaps in Hopcroft’s runtime analysis.

Before we look at the formal pseudocode to test equivalence, let us return
to the example of Figures 8 and 9 to see how the process works. (The reader
may wish to peek ahead to the pseudocode, as this is a complex algorithm.)
To begin, the inverse transition function δ−1 for these two DFAs is easily found
by inspection of the diagrams; follow the arrows in reverse to construct the
following lists:

State Input 0 Input 1

qa ∅ ∅
qb qa ∅
qc qb ∅
qd qc, qd qa, qb, qc, qd

qe ∅ ∅
qf qe ∅
qg ∅ qf

qh qf , qg , qh qe, qg , qh

Next, create the initial partition. It consists of two sets, or “blocks.” The
set of accepting states is B1 = {qc, qg}. The remainder of the states are non-
accepting, so the second set is B2 = {qa, qb, qd, qe, qf , qh}. Clearly, these two
sets are distinguishable from each other (on the empty string). Then, for each
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input symbol a and each block, assemble the set of states from that block which
has predecessors on that input symbol. To do this, check for a non-null δ−1

value. Call this set aα(i), where i is the block number, and the subscript α
indicates the input symbol a for the sake of clarity. For block B1 on input 0,
the inverse transition function on state qc leads to another state (which happens
to be qb), but state qg has a null outcome, so a0(1) = {qc}. For block B1 on
input 1, qc has a null result, but qg does not, so a1(1) = {qg}. For B2, input
0 gives a0(2) = {qb, qd, qf , qh}, and input 1 gives the set a1(2) = {qd, qh}. The
goal is to break the blocks into smaller pieces, based on these sets. For each
symbol a in the alphabet, pick the smaller set from one of the two blocks.
On input 0, B1 produced a set a0(1) of size 1, but B2 produced a set a0(2)
of size 4. Store the block number for the smaller result, block number 1 for
input 0, on a processing list L(a) for that input symbol; L0(a) = {1}. Strictly
speaking, Hopcroft does not treat the processing lists L(a) as lists or queues,
but actually as sets which store block numbers in no particular order. They can
be implemented as HashSets or Vectors in Java, as they simply store integers
(block numbers). However, it is helpful to think of these sets L(a) as “to-do
lists,” or a collection of items to be processed. When adding to these “lists,” we
always choose the number of the block with the smaller size ‖a(i)‖; it ultimately
reduces the amount of work to be done because less transitions will be involved.
Continuing our example on input 1, B1 produced a set a1(1) of size 1, whereas
B2 had a larger set a1(2) of size 2. Choose the block with the smaller set,
and store its block number on the to-do list, so L1(a) = {1}. To complete the
initialization phase of this algorithm, set a counter k equal to one more than
the current quantity of blocks, so k = 3.

We are now ready to loop through the data to produce more distinguishable
blocks. The looping continues until the sets L(a) for all input symbols are
empty. Start with the input symbol of 1. Take the block number i = 1 from
the to-do list L1(a), and delete it. (Now L1(a) = ∅.) For this block number,
a1(1) was found to be {qg}. Look up each state in this set in the δ−1 table
to get the set of predecessors P on the input symbol; this gives us only one
predecessor, as P = δ−1(qg , 1) = {qf}. For each of these predecessor states, we
need to find the block(s) j where they reside. For each such block Bj , we need
to put the predecessors into a new block B′

j . In other words, find B′
j = P ∩Bj .

Here, state qf is located in block 2. B2 = {qa, qb, qd, qe, qf , qh} can be split.
B′

2
is the intersection of B2 and P , or simply {qf}. So we create a new block

Bk = B3 = B2 − B′
2 = {qa, qb, qd, qe, qh}. The key point is that we have just

split a block into two new, distinguishable blocks of states. How do we know
this is correct? Recall that states are considered distinguishable when the same
result (accept/reject) is not necessarily obtained from both states on the same
input string. If two states on some input a lead to two distinguishable states,
or even to different blocks that are known to be distinguishable, then they are
themselves distinguishable. In this case, for input symbol 1, the states in block
B2 were tested to see if they lead to block number 1 or not. State qf will lead
to block 1 because δ(qf , 1) = qg, and qg ∈ B1. However, the other states in B2

do not lead to block 1 on input 1. For example, δ(qa, 1) = qd, and qd /∈ B1.
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Therefore, we have correctly split block B2. Observe that the split, if there is a
split, will always yield exactly two new blocks because we only separate states
that lead to block i from those which do not go to block i on input symbol a.
We don’t care about the destination block unless it is block number i. Each
block is distinguishable from every other block, so this always works (Bi is
distinguishable from Bm for all m 6= i).

Continuing the algorithm, update B2 = B′
2 = {qf}. Since the partition has

changed, a(j) and a(k) need to be updated (or created) for each symbol in the
alphabet. Currently, j = 2 and k = 3. For symbol 0, the δ−1 table has values for
a0(j) = a0(2) = {qf} and a0(k) = a0(3) = {qb, qd, qh}. For symbol 1, a1(2) = ∅
because qf has no predecessors on input 1, and a1(3) = {qd, qh}.

Now the to-do lists L(a) must also be updated with information from the
new and changed blocks. Again, we want the smaller non-empty set a(i). For
symbol 0, a0(2) is smaller than a0(3), so we add block 2 to the to-do list; our
new to-do list for symbol 0 is L0(a) = {1, 2}. For symbol 1, a1(2) is empty.
Therefore, we must add block 3 to the set of items to be processed. Since it
was previously empty, L1(a) = {3}. Increment k to 4, the next available block
number, and we are done with that iteration of the loop. The blocks in the
partition are currently:

B1 = {qc, qg}

B2 = {qf}

B3 = {qa, qb, qd, qe, qh}

To partition again: Choose a block number from a to-do list L(a), and repeat
the looping process as described in the two previous paragraphs.

In one possible sequence of events, selecting symbol 0 will eventually split
B3 so that the partition becomes:

B1 = {qc, qg}

B2 = {qf}

B3 = {qb}

B4 = {qa, qd, qe, qh}

Later, a split on symbol 0 gives:

B1 = {qc, qg}

B2 = {qf}

B3 = {qb}

B4 = {qe}

B5 = {qa, qd, qh}
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As a shortcut, if we wish, we can stop here. Since the two start states qa and
qe are not in the same block, the two automata cannot be equivalent. (For
our purposes, this is sufficent. We are not minimizing a single automaton, but
rather determining equivalence.)

The pseudocode for the algorithm:

1. On input (M1, M2), where M1 and M2 are DFAs:

2. Let S be the set of states in both automata. For all states s ∈ S and all
a ∈ Σ, construct the inverse transition function δ−1(s, a) = {t | δ(t, a) =
s}. (Stored as a table of lists of states.)

3. Create two initial partition blocks: Set B1 = F , where F is the set of final
(accepting) states in both automata. Set B2 = S − F .

4. For each a ∈ Σ, for 1 ≤ i ≤ 2, let a(i) = {s | s ∈ Bi and δ−1(s, a) 6= ∅}.
This is the set of states in block number i which has predecessors via input
a.

5. Let k be a counter for the next unused block number. Set k = 3.

6. For all a ∈ Σ, pick the smaller set and put its block number on a to-do list
(unordered set) L(a) to be processed: Let L(a) = {1} if ‖a(1)‖ ≤ ‖a(2)‖.
Otherwise, L(a) = {2}.

7. For each a ∈ Σ and i ∈ L(a), until L(a) = ∅ for all a:

(a) Delete i from L(a).

(b) Identify the blocks which can be split. For each state s ∈ a(i):

i. Use the δ−1 table to look up state s. The result is the set of
predecessor states. For each predecessor state t:

ii. Find the block where t resides, and call this block number j.

iii. Add j to a list of blocks to split, if it’s not already listed.

iv. Add t to a set of states B′
j for that block. (Create the set if

needed.)

(c) For all j in the list of blocks to split (these are the blocks where
∃t ∈ Bj with δ(t, a) ∈ a(i)):

i. If ‖B′
j‖ < ‖Bj‖, split Bj into two distinguishable sets:

A. Let Bk = Bj −B′
j .

B. Set Bj = B′
j .

C. For each a ∈ Σ, construct a(j) and a(k).

D. For each a ∈ Σ, update the list of items to process. To
minimize the number of transitions to process, we want the
smaller set, as long as it was changed. Therefore, let L(a) =
L(a) ∪ {j} if j /∈ L(a) and 0 < ‖a(j)‖ ≤ ‖a(k)‖. Otherwise,
L(a) = L(a) ∪ {k}.
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E. k = k + 1.

8. If the start states of the two automata are in the same block, then they
are equivalent, so M1 and M2 are equivalent. Otherwise, the automata
are not equivalent.

Note that the input must be restricted to DFAs for the partitioning steps to
work. If NFAs were allowed, the sets could not be split cleanly. There might
be overlap where a transition from a single state on a single symbol a could
(eventually) lead to both final and nonfinal states. As Hopcroft says, “Blocks
are refined . . . only when successor states on a given input have previously been
shown to be inequivalent.” ( [15], p. 3)

Hopcroft used linked lists, along with vectors indicating what was or wasn’t
in the lists, so that the time required to add, delete, or find an item in a list would
be fixed. None of the initialization steps (1 through 6) takes longer than O(n).
Hopcroft indicates that the nested loop structure in step 7 is executed for O(n)
iterations. The bottom line is that there are n states, and the partition cannot be
broken into more blocks than states. Significant work is only performed when
a block can actually be split. The work involved in each iteration is O(lg n)
because “once we have partitioned on a block and an input symbol, we need
never partition on that block and input symbol again until the block is split and
then we need only partition on one of the two subblocks . . . the time needed to
partition on a block is proportional to the transitions into the block and . . . we
can always select the half with fewer transitions.”(p. 2) In other words, since
L(a) always tracks the smaller new set a(i), the new a(i) to be processed will
be at most half of the size of the old one. This means that the number of states
remaining to process for the input symbol and new subblock is at least halved
after each iteration, yielding a logarithmic amount of total work. Thus, the
total time for all iterations of the nested loop is O(n lg n). Refer to Gries for an
in-depth analysis, as it is beyond the scope of this project. (Note that Hopcroft’s
pseudocode as originally presented looks at first glance like it is actually O(n2)
because his inner loop appears to process every single block with each iteration
of the outer loop. However, the fine print states that this is not the case.) The
final comparison of the start states (step 8, if we do not use this as a shortcut
condition) would only require checking less than n blocks to determine where
these states are located. Therefore, the total run time is O(n lg n).

Since the time when Hopcroft formulated this well-known algorithm, several
researchers have worked to define more intuitive approaches while maintaining
O(n lg n) complexity. For example, see Blum [2] or Knuutila [20]. In 1994,
Watson compiled a complete taxonomy of minimization algorithms [35].

In the Java implementation written for this project, the Hopcroft algorithm
was used. NFAs are legal as input because they are first converted to DFAs via
existing JFLAP subset construction code. Naturally, this slows things down.
Even though NFAs are allowed, note that the two automata drawn in JFLAP
must use the same alphabet. Each symbol must be used at least once in both
models. Otherwise, an error message is displayed to state that the two automata
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cannot be compared. The reason for this is that if the new code is run with two
different alphabets, a Java NullPointerException will result when the program
attempts to look up a state transition on a nonexistent alphabet symbol. To get
around this problem, the JFLAP user may revise their NFA diagram to include
a dead trap state. Unused symbols would need to transition from some state(s)
to this dead state.

3.3.6 The Hopcroft Algorithm, with Witness

To add a witness to the Hopcroft n lg n algorithm, we follow the spirit of the
modifications which were made to the table-filling algorithms. The key is to
track the input symbols as they are used to distinguish states. For the modified
Hopcroft algorithm, this must be done at least up to the stage where the two
start states are placed into different blocks. At the beginning of the program,
the first two blocks are initialized. One contains accepting states, and the other
contains non-accepting states. Clearly, the two automata are distinguishable
on the empty string if the start state from one automaton is accepting, but
the start state from the other automaton is not. In this case, the empty string
would be the witness string, and execution can stop immediately.

Otherwise, we need to create a string. The n lg n partitioning algorithm uses
the inverse transition function, so by using the standard transition function, we
can follow the algorithm backwards. To do this, it is necessary to track the
input symbols that are used to distinguish the states from each other as the
program executes. To reduce the amount of overhead (space), it is sufficient to
track only those symbols which distinguished the states in one automaton from
those in the other automaton. (We are not interested in whether or not two
states in the same automaton are equivalent.) One way of implementing this
would be to create a table where the rows are the states in one automaton, and
the columns are the states in the other. As a pair of states p and q is split into
two different blocks, the symbol used would be stored in the table. Once the
start states are separated (distinguished), the basic partitioning algorithm can
stop, and the witness string can be formed by calculating the transition function
δ as follows: we begin by going to the table and looking up the symbol that
distinguished the start states, and we store that symbol as the first character of
the witness string. Then we calculate δ on each of the start states (with that
symbol) to get the output states. Next, we check the two output states, and
determine if one is accepting and the other is not. As long as that is not the
case, we continue calculating δ on each pair of output states using the symbol
from the table which distinguished that pair, and append that symbol to the
end of the witness. When one state accepts and the other does not, the resulting
output is a string which one automaton accepts and the other does not. That
is the witness.

See the table in Figure 16 for the symbols used to distinguish states in the
example of the previous section. The table shows only the data up to the point
where the start states were distinguished. According to the table, 0 was the
symbol used to partition the start states qa and qe into separate blocks. Thus,
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Figure 16: Partial SYMBOLS Table for Witness in Modified Hopcroft Ap-
proach.

the witness begins with 0. Then (δ(qa, 0), δ(qe, 0)) gives the next pair, (qb, qf ).
From the table, this pair of states was split into separate blocks on input 1, giving
witness 01. Finally, (δ(qb, 1), δ(qf , 1)) = (qd, qg), which is a non-final/final pair,
so the witness 01 is complete.

The new algorithm becomes the following:

1. On input (M1, M2), where M1 and M2 are DFAs:

2. Construct an empty table SYMBOLS where the columns are the states of
M1 and the rows are the states of M2. This will store the distinguishing
alphabet symbols to be used to form the witness string if M1 and M2 are
found to be inequivalent.

3. Let S be the set of states in both automata. For all states s ∈ S and all
a ∈ Σ, construct the inverse transition function δ−1(s, a) = {t | δ(t, a) =
s}. (Stored as a table of lists of states.)

4. Create two initial partition blocks: Set B1 = F , where F is the set of final
(accepting) states in both automata. Set B2 = S − F .

5. For each a ∈ Σ, for 1 ≤ i ≤ 2, let a(i) = {s | s ∈ Bi and δ−1(s, a) 6= ∅}.
This is the set of states in block number i which has predecessors via input
a.

6. Let k be a counter for the next unused block number. Set k = 3.

7. For all a ∈ Σ, pick the smaller set and put its block number on a to-do list
(unordered set) L(a) to be processed: Let L(a) = {1} if ‖a(1)‖ ≤ ‖a(2)‖.
Otherwise, L(a) = {2}.
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8. For each a ∈ Σ and i ∈ L(a), until L(a) = ∅ for all a:

(a) Delete i from L(a).

(b) Identify the blocks which can be split. For each state s ∈ a(i):

i. Use the δ−1 table to look up state s. The result is the set of
predecessor states. For each predecessor state t:

ii. Find the block where t resides, and call this block number j.

iii. Add j to a list of blocks to split, if it’s not already listed.

iv. Add t to a set of states B′
j for that block. (Create the set if

needed.)

(c) For all j in the list of blocks to split (these are the blocks where
∃t ∈ Bj with δ(t, a) ∈ a(i)):

i. If ‖B′
j‖ < ‖Bj‖, split Bj into two distinguishable sets:

A. Let Bk = Bj −B′
j .

B. Set Bj = B′
j .

C. Store data for the witness. For each state t ∈ B′
j and for each

state u ∈ Bk: save the current symbol a as the SYMBOLS

table entry for states (t, u) if t and u are not in the same
automaton.

D. If the start states for the two automata are now in different
blocks, M1 and M2 are not equivalent. Exit this nested loop
and go to the last step below to output the witness.

ii. For each a ∈ Σ, construct a(j) and a(k).

iii. For each a ∈ Σ, update the list of items to process. We want
the smaller set, as long as it was changed. Therefore, let L(a) =
L(a) ∪ {j} if j /∈ L(a) and 0 < ‖a(j)‖ ≤ ‖a(k)‖. Otherwise,
L(a) = L(a) ∪ {k}.

iv. k = k + 1.

9. If the start states of the two automata are in the same block, then these
states are equivalent, so M1 and M2 are equivalent. Output “equivalent,
no witness” and halt.

10. Otherwise, the automata are not equivalent. To form the witness string,

(a) Initialize the witness to the empty string.

(b) Look up the SYMBOLS table entry as for the two start states. Call
these states p and q.

(c) Until one of the states p and q is a final state and the other is not:

i. Append the symbol as to the end of the witness.

ii. Set p = δ(p, as) and q = δ(q, as).

iii. Set as to the SYMBOLS table entry for the new p and q.

(d) Output the witness.
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Since we need to store the SYMBOLS table, this algorithm uses a bit more
space than the ordinary Hopcroft approach. Let n1 be the number of states in
the first automaton, and let n2 be the number of states in the second. The table
is then of size (n1∗n2). If the table must be initialized when the program starts,
this would take time O(n1 ∗ n2). The initialization time could potentially be
reduced by using a structure such as a hashtable or a Java HashMap. However,
the time complexity of the main algorithm is still no longer quite n lg n. To fill
the SYMBOLS table (or other structure) as the program runs (step 8.c.1.C),
a nested mini-loop must mark each of the states in the new block as being
distinguishable from each of the states in the revised block (while encountering
and skipping over pairs of states in the same automaton). In other words, the
pairs of newly distinguished states (t, u) must be tracked as distinguished when
they are put into separate blocks. Assume n is the total quantity of states in
both automata together. Each pair of states will only be encountered at most
once. Thus, in the worst case, each state might be checked against every other
state during the course of the algorithm, requiring roughly O(n2) time. This
can be viewed as an “additional” step to the original algorithm, as it is only
executed as needed and not for every run of the outer loop. Specifically, the
O(n2) work involved is NOT multiplied by the n lg n work for the original loop
which contains it. Rather, it is just added to it. The SYMBOLS table is only
updated when partitioning actually occurs, and this process is never executed
more than once for any pair of states. Once a pair has been split into different
blocks, that pair of states is not encountered again. Thus, the runtime for this
algorithm with data tracking for the witness is O(n1 ∗ n2) plus O(n lg n) plus
O(n2), for a total of O(n2).

In reality, you can’t quite reach the n2 worst case. The algorithm begins
with at least 2 separate blocks (unless everything is equivalent, in which case,
we’re already done). We don’t track the pairs where each state originates from
a completely different block. This is certainly no worse timewise than the basic
table-filling algorithm, and possibly better, as long as it is implemented carefully.
(We will look at the step 10 for witness creation in a moment.) The actual
runtime may be much less than O(n2) if the algorithm is halted early and a
witness is found before the entire SYMBOLS table is completed.

For purposes of this project, a Java HashMap was used for SYMBOLS rather
than a table or array. This meant that a little space was saved, as it was un-
necessary to reserve space for, or even to initialize, empty entries. (The impact
is insignificant for small automata.) It also reduced the time to access entries.
States have no inherent numbering system, and it is undesirable to loop through
all of them to find the correct pair, but lookup of a distinguished state pair ob-
ject (key) can be done quickly in a HashMap to find the alphabet symbol (value).
This improves performance. The reader may wish to see Dietzfelbinger et al.
for details regarding the design and analysis of efficient randomized hashtables
to be used in a “dynamic situation, wherein membership queries are processed
in constant worst case time, insertions and deletions are processed in constant
amortized expected time and the storage used at any time is proportional to
the number of elements currently stored in the table.” ( [6], p. 524)
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Another factor in the implementation for this project is that JFLAP stores
transitions individually, not as part of a transition function. JFLAP was de-
signed more with graph algorithms in mind. Therefore, a transition function δ
was stored on the fly for this algorithm as the inverse transition function was
created. This did not have much time impact, and it does not take much space
to store δ for a small DFA.

Note that there is more than one possible witness, depending on the order
in which states are processed during the partitioning portion of the algorithm.
Hopcroft does not specify how to choose the next symbol/state; any order will
do. Since JFLAP stores several classes, including Transitions, in HashSets, and
the partitioning portion of the algorithm does not specify the order in which
sets are processed, this means that different results may be obtained if the
algorithm is run more than once. The HashSet JavaDoc [11] explains that class
java.util.HashSet only takes constant time to find a given element, but it “makes
no guarantees as to the iteration order of the set; in particular, it does not
guarantee that the order will remain constant over time.” For instance, in the
code written for this project, if the two automata accept 00 and 01 respectively,
EquivalenceNlgNWitness.java will output either the witness 01 or the witness
00.

This can even have an impact in terms of witness string length. Neither
the Hopcroft n lg n algorithm nor the table-filling algorithm specifies the exact
order in which pairs of states {p, q} are distinguished. The modified Hopcroft
approach may produce a somewhat smaller string than table-filling because
it always goes for the smaller set when partitioning, whereas table-filling just
does whatever it encounters first. However, a counterexample demonstrates
that Hopcroft does not necessarily guarantee the absolute shortest witness: see
Figure 17 and Figure 18. (Note that these must be converted to DFAs before
running the algorithm.) The shortest witness is the string 12. However, when
the algorithm is run, it may produce either 12 or 010 as the witness. As an
enhancement, it would be feasible to sort the list L(a) of items to be processed,
such that the smallest, shortest possibilities are considered first. This would
increase the likelihood of finding the absolute shortest string, since the algorithm
stops as soon as the path to some witness has been found. Alternatively, a
quicker approach to find the shortest string is suggested in the (nearly) linear
algorithm described later.

With the algorithm as it stands, what are the bounds on string length?
Obviously, the empty string is the shortest possible witness (length 0), if exactly
one of the two automata happens to have an accepting initial state. An upper
bound can be determined from the total number of possible configurations.
Although either of the automata might repeat a state and symbol pair while the
witness is being formed, we cannot arrive at a scenario where both automata
are repeating a configuration together. In other words, if state p from one
automaton and state q from the other appear together as a pair more than once,
and we continue to run the transition function δ on them, then we are stuck in
a loop, and a witness should already have been found. The specific symbol a
which was used to distinguish p from q does not matter here, because we are
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Figure 17: An NFA which accepts 012(01012)∗.

Figure 18: An NFA which accepts 012 + 010 + 12.
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only storing (at most) one symbol per pair of distinguishable states. Therefore,
the maximum length of a witness produced via this algorithm is the size of the
table used to store the symbols. If there are n1 states in the first automaton,
and n2 in the second, this makes a maximum witness length of (n1 ∗ n2). (This
applies to the table-filling algorithm as well, since we can disregard the symbols
stored for state pairs where both states reside in the same DFA.) In our example
comparing the DFAs which accept 00 and 01, each DFA has four states, so this
makes a maximum length of 4 ∗ 4 = 16 symbols. The actual witness was only
of length 2, so this is a loose upper bound. Observe that a tighter bound is
the number of symbols actually stored in the table at program completion. If
the partitioning algorithm is halted with only a handful of entries in the table,
then that sets an upper limit on the quantity of possible symbols in the witness
string.

Is there a useful way to quantify the maximum length based on the number
of blocks in the partition? Whenever a pair of states is split into separate
blocks, a symbol is entered into the table for that pair. Each block will contain
one or more states. There appears to be no restriction saying that the witness
could not be based on multiple symbols found from the same pair of blocks. In
other words, the witness may include both symbols a1 and a2 where a1 is in
the SYMBOLS lookup table for states (p1, q1) and a2 is the entry for (p2, q2),
but both p1 and p2 are together in the same block and q1 and q2 are together
in a different block. Since the DFAs are not necessarily minimal, there may be
multiple equivalent states in the same block. Moreover, if the partitioning was
halted early, it may be that p1 and p2 are not really equivalent, and/or that q1

and q2 are not equivalent. Yet they appear in the same block. Therefore, the
number of blocks does not appear to produce a useful limit on the length of
the string, as pairs of blocks may be repeated while the witness is created from
pairs of states.

Finally, we need to account for the time to form the witness string (step 10).
If the models M1 and M2 are equivalent, the time is zero. Otherwise, the time
is no more than the length of the string, discussed above, where the transition
function δ is executed twice for each character in the string. The longest possible
string would be n1 ∗ n2, which is much less than n2 since n = n1 + n2. Adding
that to the O(n2) from the previous steps, this still gives a maximum runtime
on the order of O(n2) for the entire process.

A note on the implementation for this project: In JFLAP, recall that DFAs
are not required to have a transition explicitly defined for every symbol for
every state; missing transitions go to an implied dead (trap) state. There are
two possible ways to handle this scenario. First, what happens if we just run the
algorithm without the trap state? A problem arises when trying to construct
a witness that may require the use of the dead state. For example, if a symbol
a leads to a legitimate state in one automaton, but it is a dead end in the
other automaton, then we have no idea what the next symbol in the witness
should be, as the SYMBOLS table has not tracked any pairs of states which
include the trap state. Therefore, we are forced to try the second alternative:
If we add the trap state to the DFA before starting the algorithm, so that the

42



DFA is “complete,” then it can be run as usual. (Observe that this is also the
reason why NFAs must be converted to DFAs before the Hopcroft algorithm
can be run. For each state, every alphabet symbol must lead to exactly one
state to avoid ambiguity.) If we do not need a witness, then the trap state
is not required. This is because, based on the transitions which are present,
some path will still lead to a final state in one of the automata, but not in
the other (assuming they are not equivalent), so the partitioning based on the
inverse transition function still works. In the code which was written for this
project, a new setUpTrapStates() method was created, rather than relying on
the existing JFLAP 6.4 trap state code which was too deeply integrated into
the GUI. A quick test verifies if the number of transitions equals the number of
states times the size of the alphabet. If so, then all transitions are accounted
for. Otherwise, the trap is actually needed. In that case, the complexity of this
method is just O(n); the program will loop through each state for each symbol
(where the number of symbols is constant) to check what is missing and add it
to the model if necessary. The amount of work for each addition is not entirely
negligible, as the automaton, the function delta, and delta inverse must all be
updated. However, these are single-step processes, and the overall complexity
of the program remains O(n2).

3.3.7 An Observation on State Inequivalence

When the algorithms discussed above are used to test the equivalence of two
DFAs, typically the focus has been on determining if the start states of the two
automata are equivalent. Clearly, if the start states are equivalent, then both
automata must accept the same language.

However, it is also possible to attack the problem from a different angle.
Since the minimal DFA for a given language is unique, we can use any reachable
state(s) as the criteria to judge equivalence, not just the start states. Observe
that any states which are equivalent in a non-minimal DFA will be reduced to a
single state to form the unique minimal DFA. There may be duplicates in a non-
minimal DFA, and unreachable states must be eliminated, but each “minimized”
state must be present at least once in the non-minimal version. Therefore, to
test for equivalence of two DFAs (assuming unreachable states have already
been eliminated), each state in the first automaton being compared must have
at least one corresponding equivalent state in the second automaton, or they
cannot recognize the same language.

This has a potential practical application if a programmer would like an
extra shortcut to halt the partitioning algorithms sooner. For instance, in the
Hopcroft n lg n algorithm, as soon as a new block B is formed, we can do a
quick check, and if B contains only (reachable) states from a single DFA, then
we know that the two DFAs are not equivalent, and we can stop executing
the program. (It is possible that not all of the states within B are equivalent,
but the important point is that none of them are equivalent to any states in
the second DFA. However, unreachable states in either DFA should be ignored
here, as they have no impact on which strings are accepted.)
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Similarly, in the table-filling algorithms, it would also be possible to halt
execution sooner in some cases, even before the start states are marked as dis-
tinguishable. If it is found that a particular (reachable) state has been marked
distinguishable from every (reachable) state in the opposite DFA, then the two
DFAs are not equivalent.

It would be interesting to run some empirical tests on this type of approach
to see if it reduces runtime for different categories of DFAs. It does require a
little more logic to be executed, but it may be worth it if it cuts down on the
overall number of loops being performed. It may even be feasible to design a
completely new equivalence-checking algorithm based on this property.

3.3.8 The (Nearly) Linear Algorithm by Hopcroft and Karp

Hopcroft and Karp demonstrate that, if it is not necessary to minimize the
automata for some other purpose, it is possible to check for equivalence in (very
nearly) linear time. This algorithm [12] does not appear to be as well known
as the others, because it seems that more emphasis has generally been placed
on minimization than on checking equivalence. This algorithm is quite different
in that it employs a straightforward merging method instead of a partitioning
approach. It begins by merging the start states into a single set (list), and it
puts the pair of states on a stack for further consideration. Then, the stack is
popped repeatedly until it is empty. For the current pair and for each symbol
in the alphabet, the algorithm calculates δ to get the next pair of successor
states. The successors are then merged and pushed onto the stack, if they have
not already been merged. One state will be chosen as the representative of the
merged states. At the end of the algorithm, if any merged set of states contains
both an accepting state and a non-accepting state, then the two automata are
not equivalent. (This resembles a proof by contradiction: we assume that the
start states are not distinguishable, and put them into the same set. However,
if this eventually results in a situation where accepting and non-accepting states
are combined, then the start states must be distinguishable, since they cannot
be equivalent.)

As an example, test Figures 8 and 9 for equivalence. The first step is to
initialize eight sets, one for each state in the automata (qa through qh). Next,
we merge the two start states, qa and qe, into a single set, represented by qa, and
push the pair {qa, qe} on a stack. Then we enter a processing loop: pop items
off of the stack and process them until the stack is empty. First, pop {qa, qe}.
Follow each of the transitions out of these states and merge the sets containing
the resulting pairs (if they are not already merged). New merges must always
be added to the stack for further consideration. On symbol 0, the transitions
from qa and qe lead to the pair qb and qf , so merge the new pair into a new set
represented by qb, and push them onto the stack. On symbol 1, the transitions
lead to qd and qh; these must also be merged and pushed. Assume the set is
represented by qd.

For the next iteration of the loop, we pop {qd, qh}. On both symbols 0 and
1, these states only lead to themselves, and they have already been merged,
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so there is nothing new to push onto the stack. Continuing, pop {qb, qf}. On
symbol 0, they go to {qc, qh}, so the new pair is merged (into the same set with
state qd, which has already been combined with qh), and {qc, qh} is pushed onto
the stack, assuming qc is the new representative of the set. The representative
member may vary, depending on the set-merging algorithm which is used. On
symbol 1, the transitions lead to {qd, qg}; again, combine the states into a single
set {qc, qd, qg , qh}. If qc is still the representative (name) of the set, the pair to
place on the stack is {qc, qg}.

The next pop is then {qc, qg}. For both input symbols 0 and 1, they tran-
sition to {qd, qh}, which are already in the same set. Therefore, pop the next
pair, {qc, qh}. These states also always lead to {qd, qh} on any input symbol.
There is nothing more to place on the stack, and the stack is now empty. Our
final sets are: {qa, qe}, {qb, qf}, and {qc, qd, qg , qh}. To test for equivalence, we
scan through the sets and determine if any of them contain both accepting and
non-accepting states. The third set does contain both, and therefore, the two
automata are not equivalent.

Since all input symbols (i.e., all transitions) are considered for each pair of
states on the stack, every reachable state will eventually be pushed onto the
stack. The first time a new state is encountered, it is alone in its own set,
so it is its own representative, and its actual transitions will all be followed.
Unreachable states do not impact the language accepted by the DFA, so they
are irrelevant when testing equivalence. Therefore, the algorithm correctly and
completely determines whether or not the two DFAs accept the same set of
strings.

Note that to be linear in complexity, this algorithm requires a linear set
merging algorithm (or “list” merging algorithm). In [12], Hopcroft and Karp
do not provide a set merging algorithm, but instead refer the reader to [13], a
technical report by Hopcroft and Ullman. Hopcroft and Karp briefly explain
the MERGE operation involved when combining sets and the FIND operation
used for finding a particular element’s set:

“The linear list merging algorithm starts with n sets, each set con-
sisting of a single integer between 1 and n. The set containing the
integer i is given the name i. The list merging algorithm executes
two types of instructions, a merge instruction and a find instruc-
tion. The execution of an instruction MERGE(i, j, k) causes the set
named i and the set named j to be combined into a single set named
k. The execution of an instruction FIND(i) determines the name of
the set currently containing i. The important property of this algo-
rithm is that the time necessary to execute any sequence of merge
and find instructions, whose length does not exceed a constant times
n, is bounded by a constant times n.” [12]

However, as subsequent research has shown, no known algorithm can quite
do this within a constant times n. Rather, the best complexity for this particular
scenario would be O(nα(n)), where α(n) is a function which is so slow-growing
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that it is constant for all practical purposes. In fact, Hopcroft and Ullman
published a later paper [14] on set merging algorithms which does not assert that
the complexity is linear. The most up-to-date version, specifically disjoint-set
forests as presented by Cormen et al., will be used here. Cormen et al. explain
the tightest possible known bound on the complexity, and their pseudocode
resembles [13] but avoids set naming concerns while remaining extremely clear
and concise. They describe several approaches, and we will use the fastest
version, with two heuristics that improve the run time ( [5], p. 508). Read
Cormen et al., chapter 21, for the full details on the run time. We will review the
pseudocode in a moment. In brief, MAKE-SET(i) creates a new set with i as the
sole member, and i is specified as its own parent. In this model, the root is the
representative member (or name) of any given set. In place of MERGE(i, j, k),
we will use UNION(i, j), which combines the trees containing i and j in an
efficient manner; the name of the new set will be the root of one of the two
original trees. Finally, instead of FIND(i), the function to find the representative
for the set containing i will be called FIND-SET(i). The pseudocode for the
equivalence checker is then as follows. n is the sum total of the number of states
in the two automata which are being checked for equivalence.

1. On input (M1, M2), where M1 and M2 are DFAs with start states p0 and
q0 respectively:

2. Initialize n sets: For every state q, MAKE-SET(q).

3. Begin with the start states. UNION(p0, q0) and push the pair {p0, q0} on
a stack.

4. Until the stack is empty:

(a) Pop pair {q1, q2} from the stack.

(b) For each symbol a in Σ:

i. Let r1 = FIND-SET(δ(q1, a)) and r2 = FIND-SET(δ(q2, a)), so
that r1 and r2 are the names of the sets containing the successors
to q1 and q2.

ii. If r1 6= r2, then UNION(r1, r2) and push the pair {r1, r2} on the
stack.

5. Scan through each set. If any set contains both an accepting state and a
non-accepting state, then the two automata are not equivalent. Otherwise,
the automata are equivalent.

Hopcroft and Karp initially argued that the complexity of this algorithm
is linear, O(‖Σ‖n), where ‖Σ‖ is the size of the alphabet. It can actually be
implemented in a manner such that it is virtually linear. Clearly, it only takes
linear time on n to initialize the n sets. The initial merge of the start states
will definitely take less than linear time, as only two sets of size 1 are involved.
Also, the final scan to check for combinations of accepting and non-accepting
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states in the same set will only have to consider n states at most, so it is linear
in the worst case. The tricky part is the loop where items are being popped
from the stack and processed. As explained above, the work for the FIND-SET
and UNION calls is known to be bounded by the number of calls (i.e., no more
than some multiple of n) times a slow-growing function on n which is very close
to constant. The number of pushes to the stack will be no more than n − 1
because we start out with n sets, and each time a new pair of states is pushed,
the number of sets has been reduced by one. When r1 = r2, nothing will be
pushed on the stack. Therefore, no more than n − 1 pairs will ever be pushed
(popped), and the total number of calls for this outer loop is O(n). This is
multiplied times ‖Σ‖ for the inner loop, giving a total complexity which closely
approximates O(‖Σ‖n), or nearly O(n) if we leave out the constant ‖Σ‖.

This merging algorithm appears to be the fastest one available for testing
DFA equivalence. (It would be difficult for it to be much faster, since it takes
a minimum of linear time just to read through the n states!) The pseudocode
even has the advantage of being elegant and easy to understand. One possible
programming shortcut would be to stop execution as soon as an accepting state
was merged with a non-accepting state.

What does the set merging code look like? Cormen et al. provide the follow-
ing pseudocode. The set elements x and y are assumed to be integers, for the
sake of simplicity. p is an array storing the elements’ parents, and rank is an ar-
ray setting an upper bound on the distance that a set’s root element might have
from the farthest leaf of its tree. Whenever two sets are merged, the rank allows
optimization via a “union by rank” heuristic wherein the root of the larger set
remains the root of the combined set. The other important heuristic is “path
compression;” whenever a FIND-SET call is made to find an element, the root
becomes the direct parent of each node which is recursively encountered along
the way. Here is the pseudocode exactly as presented in Cormen et al. (quoted
directly from [5], p. 508):

MAKE-SET(x)

1. p[x]← x

2. rank [x]← 0

UNION(x, y)

1. LINK(FIND-SET(x),FIND-SET(y))

LINK(x, y)

1. if rank [x] > rank [y]

2. then p[y]← x

3. else p[x]← y

4. if rank [x] = rank [y]

5. then rank [y]← rank [y] + 1
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FIND-SET(x)

1. if x 6= p[x]

2. then p[x] ← FIND-SET(p[x])

3. return p[x]

3.3.9 A (Nearly) Linear Algorithm, with Witness

With a little work, we find that the previous algorithm can be modified to
produce a witness string, without slowing it down significantly or making it
overly cumbersome. Observe that the basic algorithm begins by processing the
start states, and then it follows transition paths (strings) as they extend to all
reachable states. If we can track a string that leads from the start states to an
accepting state in one DFA, but to a non-accepting state in the other, then we
will have a witness.

Notice that there is no reason why the list of items to be processed must
specifically be stored on a stack, rather than some other data structure. The
important thing is to merge the states as we encounter them, not to track the
order in which the states are encountered. Therefore, the first modification
would be to replace the stack with a FIFO queue. This will ensure that strings
of length 1 are processed before strings of length 2, which are processed before
strings of length 3, etc., so that we can find the shortest possible witness. Es-
sentially, we are now doing a breadth-first search to try to find a witness. (Note
that this modification is not necessary if we do not wish to restrict the witness
length.) Second, the actual pair of states p and q should always be placed on
the queue, rather than r1 and r2, which are just are the names of the sets con-
taining p and q. This is important for our purposes, since we need to strictly
and systematically follow both of the DFAs’ transition functions in subsequent
iterations in order to produce an accurate witness. To emphasize this point,
the pairs will now be ordered ((p, q) rather than {p, q}): p always comes from
one DFA, and q from the other. Third, the merge procedure remains the same.
However, execution should stop as soon as we merge a pair (p, q) if exactly one
of the two states p and q is accepting. That is our flag that the two automata
are inequivalent and that we have found a witness. Fourth and finally, we need
a way to store the transitions which were followed, so that the witness can be
reconstructed at the end of the program. A structure such as a doubly linked
tree might work, with state pairs as the nodes and input symbols as the links,
but the pseudocode below assumes that a map (such as a Java HashMap) is
being implemented.

1. On input (M1, M2), where M1 and M2 are DFAs with start states p0 and
q0 respectively:

2. Initialize n sets: For every state q, MAKE-SET(q).

3. Begin with the start states.
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(a) If p0 and q0 are both accepting states, or both non-accepting states,
UNION(p0, q0) and place the pair (p0, q0) on a FIFO queue.

(b) Otherwise, output the empty string as the witness. Halt.

4. Until the queue is empty:

(a) Dequeue pair {q1, q2}.

(b) For each symbol a in Σ:

i. Let p = δ(q1, a) and q = δ(q2, a).

ii. Let r1 = FIND-SET(p) and r2 = FIND-SET(q), so that r1 and
r2 are the names of the sets containing the successors to q1 and
q2.

iii. If r1 6= r2:

A. UNION(r1, r2) and place the pair (p, q) on the end of the
queue. In a map, save a key-value pair with (p, q) as the key,
and (q1, q2, a) as the value. The value can later be used to
reconstruct how the key pair was reached.

B. If p and q are both accepting states or both non-accepting
states, continue looping.

C. Otherwise, p and q are distinguishable, so create the witness
string as follows:

D. Initialize the witness to the empty string.

E. Initialize KEY = (p, q).

F. Until KEY = the start states (p0, q0): look up the map
value (qK1, qK2, aK) corresponding to KEY. Concatenate the
symbol aK to the beginning of the witness. Set KEY =
(qK1, qK2), and repeat.

G. Output the witness and halt.

5. The automata are equivalent. Output “equivalent, no witness” and halt.

Let us rework the example of Figures 8 and 9. We initialize one set for each
state, {qa} through {qh}. Then, merge the start states, qa and qe, into a single
set. Place the pair (qa, qe) on a queue. Now we loop until the queue is empty.
Take (qa, qe) from the queue, and follow the transitions on each input symbol.
Symbol 0 takes us to qb and qf . These need to be merged, and the pair (qb, qf )
is placed on the queue. In addition, put the key-value pair ((qb, qf ), (qa, qe, 0))
in a map. Both qb and qf are non-accepting states, so we keep going. On input
1, (qa, qe) transition to qd and qh. These two state sets are merged, and (qd, qh)
is added to the queue. ((qd, qh), (qa, qe, 1)) is added to the map. Since qd and qh

are both non-accepting states, we continue with the loop. We dequeue the next
item, (qb, qf ). On input symbol 0, these states transition to qc and qh, so we
merge these states into the set {qc, qd, qh}, and put (qc, qh) on the queue. Then
we add ((qc, qh), (qb, qf , 0)) to the map. Finally, we find that qc is an accepting
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state, but qh is not, so these states cannot be equivalent, and we can produce a
witness.

To do this, we initialize the witness to the empty string, and begin with the
last pair, (qc, qh). If we look this up in the map, we get the value (qb, qf , 0),
meaning the pair was reached on symbol 0, coming from (qb, qf ). Add the
symbol 0 to the beginning of the witness, and then find (qb, qf ) in the map.
This key gets us the value (qa, qe, 0). So, we add another 0 to the beginning of
the witness, giving the string 00. Since (qa, qe) is the pair of start states, we
have returned to our origin, and the final witness string is 00. This string is
accepted by exactly one of the two DFAs.

The complexity of this new algorithm is still near-linear. It should only
take constant time to verify if a particular state is accepting. Assuming map
additions and lookups can be done in near-constant time, the overall complexity
will remain nearly linear. The loop to create the witness will only be executed
O(n) times – no more than the length of the witness itself, which can be no
longer than the number of items placed on the queue in the main loop. Again,
the queue implementation ensures that we find one of the shortest possible
witnesses by checking the shortest strings first. Space-wise, the big addition is
the map, which is also bounded in size by the number of items placed on the
queue.

In the EquivalenceMergeWitness.java class written for this project, the queue
was implemented as a Vector, and a counter was used to track the current
head of the queue. To ensure that a dequeue operation was a constant time
operation, dequeuing was performed by getting the element at the index of the
counter and then incrementing the counter, rather than by physically removing
elements and reindexing/resizing the Vector every time states were dequeued.
Since JFLAP does not store transitions as a transition function, a HashMap
delta was built to map an input state and input symbol to the output state;
this is the same approach as in the EquivalenceNlgNWitness.java program. The
merge algorithm, however, required no inverse transition function, and it was
much easier to implement. The number of lines of code in the merging program
was almost cut in half by comparison to the Hopcroft partitioning algorithm.
This includes comments, but leaves out supporting objects such as the disjoint
set class, which was a separate file.

In the actual set implementation, StateDisjointSets.java, Vectors were used
for the parents and the ranks, rather than arrays. This was done so that the
number of elements did not have to be known immediately when initializing
the data structures. Unlike arrays, Vectors can grow. This helped to avoid
extra iterations to process the JFLAP States and Transitions, especially in
cases where a trap state had to be added later on. Moreover, since the set
elements were States rather than integers, an additional HashMap stateToIndex

was used to quickly map each State to its Vector index. (The Java HashMap is
actually a hash table, and it was a good choice because it “provides constant-
time performance for the basic operations (get and put), assuming the hash
function disperses the elements properly among the buckets.” [10]) To facilitate
reverse lookups, a Vector of States called indexToState was implemented. The
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position of each State element in this Vector matched its index in the parent

and rank Vectors.

3.3.10 Testing Equivalence in JFLAP

The original JFLAP program already contains code which can be used to check
finite automata to determine if they are equivalent. Here is a brief overview and
discussion of the most significant of these Java classes.

The DFAEqualityChecker is a simple isomorphism checker that verifies if two
automata are identical or not, apart from the naming of states. It cannot be
used to check for equivalence unless the automata have already been converted
to (or created as) minimal DFAs, since the NFAs to specify a given language are
not unique in general, and only the minimal DFA is a unique DFA. Like much
of the code in JFLAP, this DFAEqualityChecker class treats the automaton as
a directed graph, where the states are the vertices (nodes) and the transitions
are the edges. It compares pairs of states recursively, beginning with the initial
states of the two DFAs, to see if they correspond. The hypothesize() function
operates on these states as follows:

1. It checks a hashmap to see if the pair of states is not already known to
match (or not match). If found, it returns true (or false).

2. Otherwise, if one of the pair is accepting and the other is not, then it
returns false, as they cannot be equivalent.

3. Otherwise, if the number of transitions exiting each state in the pair is not
equal, then it returns false. (Recall that JFLAP allows missing arrows in
DFAs; they lead to an implied dead state. Therefore, for two states to be
equivalent, they need to have the same quantity of exiting transitions.)

4. Otherwise, the transitions must be tested in more detail to verify equiva-
lence. If each transition from the first state does not have a corresponding
transition from the second state, then it returns false, as the states would
not accept the same strings. To decide this, the program first checks the
labels on all of the transitions. If there is a transition on some input a
from the first state but no such transition from the second state, then
false is returned. Otherwise, the two states are placed in the hashmap
as potential matches, and a recursive call is made to this hypothesize()
function to verify if the new state reached in the first DFA on each input a
corresponds to the new state reached in the second DFA. If not, it removes
the original pair of states from the map and returns false.

5. Otherwise, it returns true.

The JFLAP FSAEqualityChecker class makes use of this DFAEquality-
Checker to verify whether or not two automata actually accept the same lan-
guage. As you would expect, it converts the two automata to DFAs, minimizes
each of them, and then runs the DFAEqualityChecker. Since the minimal DFA
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is unique for a given language, this isomorphism-checking procedure will return
the correct answer (equivalent, or not equivalent). This runs rapidly enough
to work for typical school assignments containing only a handful of states, al-
though, as we have seen, faster methods are available to handle large automata.

The NFAToDFA class is an implementation of NFA-to-DFA conversion. The
algorithm is a subset construction approach along the same lines as the one
described earlier in this chapter.

The Minimizer class, however, views partitioning in a slightly different way
than the other partitioning algorithms in this paper. Rather than filling in a
table or constructing linked lists, it uses a tree model. The root starts out
containing all states, and the tree branches out whenever states can be dis-
tinguished on some input. The leaves of the finished tree represent groups of
indistinguishable states, which can then be used to construct the minimized
DFA. The JFLAP manual [28] by Rodger and Finley outlines this approach as
follows (quoted directly from pp. 28 - 29):

We describe the algorithm to convert a DFA M to a minimal state
DFA M ′.

1. Create the tree of distinguished states as follows:

(a) The root of the tree contains all states from M .

(b) If there are both final and nonfinal states in M , create two
children of the root - one containing all the nonfinal states
from M and one containing all the final states from M .

(c) For each leaf node N and terminal [symbol] x, do the fol-
lowing until no node can be split:

i. If states in N on x go to states in k different leaf nodes,
k > 1, then create k children for node N and spread
the states from N into the k nodes in indistinguishable
groups.

2. Create the new DFA as follows:

(a) Each leaf node in the tree represents a state in the DFA
M ′ with a label equal to the states from M in the node.
The start state in M ′ is the state that contains the start
state from M in its label. A state in M ′ is a final state if
it contains a final state from M in its label.

(b) For each arc [arrow] in M from states p to q, add an arc in
M ′ from the state that has p in its label to the state that
has q in its label. Do not add any duplicate arcs.

The tree can be presented in a visual way which many students may find
helpful. However, notice that the tree-building portion of the algorithm is fun-
damentally similar to the table-filling algorithm, although it looks very different.
Here are some similarities:
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Figure 19: A nonminimal DFA that accepts aaa, aab, bba, and bbb.
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Figure 20: The JFLAP minimization tree for the DFA that accepts aaa, aab,
bba, and bbb.
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Figure 21: The minimized DFA produced by JFLAP.
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• JFLAP simply splits distinguishable states into separate nodes rather than
marking them distinguishable by filling in an ‘X’ in a table. At the start of
the JFLAP program, the two immediate children of the root correspond
to the initialization step in the table-filling algorithm where table entries
are marked if one state is distinguishable and the other is not.

• As either algorithm runs, it repeatedly loops through every pair or set of
states which has still not been distinguished, using every input symbol,
until no more states can be distinguished.

• The “partitioning” is more visible in JFLAP, but recall that table-filling is
also a partitioning algorithm because it ultimately divides the states into
unmarked groups which have been determined to contain only equivalent
states.

• One difference is that JFLAP doesn’t just look at pairs of states. It
notices when three (or more) states in a group (node) lead to two, three,
or more different nodes, and separates them accordingly. The table-filling
approach just marks anything distinguishable with a generic ‘X.’

• In the table-filling algorithm, indistinguishable states are never marked.
In this JFLAP algorithm, indistinguishable states remain in the same node
in the finished tree. In either case, of course, the indistinguishable states
may be represented by a single state in the minimized DFA.

When creating the new DFA, the “label” in the JFLAP algorithm is simply
a list of the states contained in the node. For example, see Figure 19. This DFA
accepts strings of length three beginning with either aa or bb. States q3 and q6

are the only equivalent states, so they are in the same leaf of the finished tree
in Figure 20. The minimized DFA produced by JFLAP is shown in Figure 21.
There are six states corresponding to the six leaves of the tree, labeled with the
numbers of the states from the original DFA.

What is the time complexity of this algorithm? The pseudocode from the
manual is very high-level, so the complexity could vary. Since it was not imple-
mented with an eye to efficiency, JFLAP does not come close to the O(n2) or
O(n4) which is feasible with table-filling. Looking at the actual Minimizer.java
code in detail, it appears to do extra initialization steps which are essential, but
not obvious. An AutomatonChecker is run to check for NFAs. It counts the
quantity of nondeterministic states by looping through each state and check-
ing if any of its transitions are lambda (epsilon) transitions, or if any of the
transitions occur on the same alphabet symbol. If there are any nondetermin-
istic states, the program aborts. Otherwise, once it decides that it has a DFA,
not an NFA: It first finds unreachable states via the UnreachableStatesDetector
(more on that algorithm in a moment) and removes them. Since the JFLAP
GUI allows multiple symbols on a single transition, the program must run a
FSALabelHandler to replace these with separate transitions (and potentially
more states). This is not what one would expect from the standard definition
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of DFAs, so we could disregard this step in our analysis. However, since the
JFLAP GUI (and some standard definitions) also allow missing transitions for
a DFA, the code then checks if a trap state is needed, an O(n) operation whose
complexity is affected by the number of input symbols and the quantity of tran-
sitions, which will be no more than a constant. If it turns out that transitions
are missing, then a trap state is added in another O(n) operation (a loop for
every state for every symbol).

Now that it is a “minimizable automaton,” the algorithm begins in earnest.
The user has the convenient option of building the tree in sections or all at
once. The first step grabs an array containing all of the states and puts it in
the root. This would take a single unit of time, except that for some reason the
Arrays.sort() method is used to put them in ascending order by state ID. The
first-level child nodes are an array containing the final states (pulled directly
from an existing HashSet) and an array of the non-final states (which is deter-
mined via an O(n) loop that checks the HashSet of final states against each state
in the DFA). These children are inserted into the tree. Insertions appear to be
an efficient operation as the Swing DefaultTreeModel is used. Now a while()
loop begins, and it runs as long as the tree is not minimized yet, meaning some
group of states in a node is still distinguishable. Unfortunately, each call is
run identically twice, once to get a boolean isMinimized, and again to obtain
the actual group of states. This is expensive because it requires getting all of
the leaves (a recursive call starting at the root), iterating through all of the
leaves, finding the alphabet (by iterating through all of the transitions in the
DFA each time!), and testing each group (leaf) against each alphabet symbol
for splittability. Splittability is detected by looping through every transition of
every state in the group to see if it has the desired alphabet symbol. If it does,
JFLAP will track the node it goes to, and put this node on a list. This again
causes extra work, as it will get all of the leaves (each time) and iterate through
them until the correct node for the resulting state is found. If more than one
node exists on the final list, the group can be split.

Unfortunately, the program does not save the alphabet symbol that was
used, so it has to look for one all over again. It retrieves the alphabet from
the automaton from scratch again, and rechecks the group for splittability on
each symbol all over again. Once it has the symbol, it calls much of the same
kind of messy logic to get and iterate through the leaves again and determine
which states in the group lead to different leaves on this symbol. These are
then added to the tree as separate children of the group, with a notation of
what the alphabet symbol was. This is not quite as simple as it could be, as
it does another recursive call through the tree to find the node for that group
which we are using as a new parent! In short, the complexity of this code is
some polynomial on n – a polynomial far greater than it truly should be. It
does not pose a problem for the typical JFLAP user because the automata are
so small. There is no doubt that the same pseudocode to create the tree could
be implemented more efficiently to allow fast processing for larger DFAs, even
if the user were still given the ability to build the tree piecemeal, so that they
could watch the steps.
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Now that the tree has been formed, the minimal DFA can be created. JFLAP
searches for all of the leaves in the tree (again), and iterates through them. The
program loops through the states within the leaf to determine if it contains
an automatically created trap state. If so, this leaf is omitted. Otherwise, it
creates a state in the minimal DFA for that leaf. JFLAP loops through the
states within the leaf again to see if any of them are initial, and if so, the new
DFA state becomes initial. Similarly, it also loops through the states in the leaf
to determine if there are any final states; if so, the new state becomes final.
These three loops could of course be combined into one for somewhat tighter
efficiency, but clearly there are other tasks which would have a significantly more
dramatic effect on performance if their output was saved to minimize repetition.

To find the transitions for the minimal DFA, JFLAP creates an empty list
for the transitions and then loops through the new set of states. For each
state, it gets the transitions by looking up the tree group for that state, and
then picking the first (original) state within that group. It gets the array of
transitions for that state from a map. (It seems that one original state suffices,
since the states are all equivalent within a group, and their sets of transitions
must therefore be equivalent, in effect. This is, in fact, a time-saver.) For each
transition, it determines what old state it went to, and which new state group
now is the destination (it contains the old state). If the group does not contain a
temporary trap state, it finds the minimal DFA state for that group, determines
the alphabet symbol for the transition, and adds the transitions to the list. The
program returns to the top of the loop to the next new state, if any. Lastly, the
program iterates through the full list of new transitions and adds them to the
minimal DFA, one by one, and the DFA is done. Things could be tightened up,
but we are still looking at some polynomial on n to create the minimal DFA
from the tree. The formation of the tree itself appears to be the most costly
part of the implementation, both because of the inherent complexity of the steps
and because of the extreme duplication of calls.

An additional point to make about the JFLAP equivalence testing algorithm:
since JFLAP allows missing arrows in DFAs, some special handling is required.
Any missing arrows must be directed to a temporary dead (“trap”) state before
the tree is built during the minimization process. States q3 and q6 in Figure 19
were both dead states. If the user runs the “Minimize DFA” menu option of
the software, and they have any missing transitions in their automaton, they
will actually see that an extra trap state is added to their automaton until
the tree is done. However, this trap state is automatically removed before
the finalized minimal DFA is displayed. Therefore, the minimal JFLAP DFA
for the same language can vary. For example, see Figures 22 and 23, which
can both represent the languages with alphabet {0, 1} consisting of an even
(nonzero) number of zeroes. In this case, the symbol 1 does not even appear
in the second model. The strict definition of the DFA requires transitions to
appear for each symbol for each state. JFLAP, however, considers both of
these models to be valid. Using the JFLAP algorithms, the minimal DFA
will be one state smaller if the user originally entered a diagram with some
dead-end arrows missing. This happens because if a leaf in the tree contains a
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Figure 22: A DFA that accepts an even number of zeroes. q1 is a trap state.

Figure 23: Another DFA that accepts an even number of zeroes. Legal in
JFLAP even if 1 is in the alphabet.
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temporary trap state, no corresponding state is added to the new minimal DFA,
and none of the transition arrows to this state are drawn. On the other hand,
if the user enters a DFA with all transitions accounted for, and there is a dead
state involved, this state will NOT be eliminated in the final diagram, as the
program does not consider it a special “trap.” Yet the “Compare Equivalence”
menu option will recognize that the DFAs represent the same language, whether
or not the dead state is shown. However, the two DFAs are certainly not
isomorphic. Since the overall method is to compare graph isomorphism, and
the third step of DFAEqualityChecker.hypothesize() relies upon a count of the
number of transitions (edges) to compare pairs of states (nodes), JFLAP first
has to define each minimal DFA to be in the form which contains no arrows
which would lead to a dead state. Then, behind the scenes, the two DFAs are
correctly tested against each other for equivalence.

Stepping back from the specifics of the Java implementation for a moment,
at a higher level, it is easy to modify and speed up the JFLAP pseudocode for
minimization if all we want to do is check for equivalence of DFAs. If we took
the Minimizer algorithm and inputted the two DFAs to compare, we would just
need to build the tree and then check if the two start states appear in the same
node or not. Again, this is simply the table-filling algorithm in the guise of a
tree. There is no need to check for isomorphism (or to worry about trap states).
Here is the modified pseudocode:

1. On input (M1, M2), where M1 and M2 are DFAs:

2. Create a tree which will branch on distinguishable states. The root node
of the tree contains all of the states from M1 and M2.

3. If there are both final and nonfinal states in the root node, create two
children of the root - one containing all of the nonfinal states and one
containing all of the final states.

4. For each leaf node N and symbol x, do the following until no node can be
split:

(a) If states in N on x go to states in k different leaf nodes, k > 1, then
create k children for node N and spread the states from N into the
k nodes in indistinguishable groups.

5. If the start states of the two DFAs are in the same leaf, then M1 and M2

are equivalent. Otherwise, they are not equivalent.

The two automata accept the same set of strings (the same language) if and
only if the start states are equivalent, so we are done. The bulk of the work for
this revised algorithm takes place in step 4. If the code were written carefully, so
that transitions could be determined quickly and nodes could be found/inserted
quickly, this would probably approach the n4 or n2 table-filling algorithms in
terms of efficiency. As we have seen, it would depend on the implementation of
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the algorithm, including the representation of the objects (states, transitions,
symbols, leaves) and how we do lookups.

Back to minimization: The UnreachableStatesDetector is another Java class
of interest when minimizing in JFLAP. It can be used to determine which states
are unreachable from the start state. Since these states will never be used to
process any input string, they can safely be deleted from an automaton as a
first step when minimizing. JFLAP uses another graph-oriented approach to do
this. When running the UnreachableStatesDetector program on an automaton,
all states in the automaton are initially unmarked (colored white). Then it uses
a depth-first search, beginning at the start state, to recursively visit and mark
(color black) all neighbor states that can be reached by following all specified
transitions. Whenever a new state is reached, its neighbors are also visited and
marked. At the end of the recursion, any state that is still not marked (white)
is unreachable, and may be deleted without changing the language which the
automaton represents.

3.3.11 Batch Grading: Testing Equivalence in BFLAP

To facilitate grading of student assignments done in JFLAP, Ambrose Kofi Laing
wrote a Perl program for batch grading [21], called BFLAP. It includes code to
check for equivalence of DFAs by taking the symmetric difference and then
testing for emptiness, as described in the first equivalence-checking algorithm
above. However, if this is the only algorithm the teacher uses, they may be
faced with a dilemma when the student’s answer does not match the answer
key. Should the student receive any credit for their attempt, or should they
simply receive a zero?

BFLAP has a way to give partial credit. It simply runs several strings on the
student’s automaton to see if the outcome (accept/reject) matches the expected
outcome. The student receives points for each string which is correctly accepted
or rejected. As Laing comments in the “Quantitative Grading Section” of his
Perl script [21], “everybody gets points taken off for exactly the same reasons,
regardless of how their machine was designed. I test your machine on a number
of strings (choose the same strings for everyone, and I make up the set of strings
before looking at the automata).” This is a good way to enforce uniform, fair
grading. However, Laing adds that “You can get a perfect score on this section
with luck, even if your machine is not correct.” So, a potential problem arises
if this is the only algorithm used during the grading process; the student could
submit an incorrect answer, and never realize that it was wrong if all of the
selected strings happen to pass the test. Clearly, this would not be ideal for
learning purposes. Therefore, running the equivalence-checking algorithm first
is important. Equivalence should be proved, not assumed on the basis of a few
strings which may be only a tiny subset of the language (or its complement).
Moreover, the instructor may wish to choose the test strings with care to reveal
specific characteristics of the desired DFA.
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3.4 Space

As we have seen, the equivalence (or inequivalence) of two DFAs can be de-
termined in polynomial, n lg n, or even near-linear time on the total number of
states in the two DFAs, n. This implies that it can also be determined within al-
most linear space on the length of the input (number of states). Conceptually, in
a Turing machine, you can only read and write to at most one tape cell per unit
time. Therefore, it is not possible to use more space than time as the algorithm
runs. However, we do not even need linear space. Cho and Huynh [4] mention
that the inequivalence problem for DFAs has been shown to be NL-complete.
This means that the problem falls into class NL (also called NLOGSPACE),
which includes the problems that can be solved by a nondeterministic Turing
machine using only a logarithmic amount of space based on the length of the
input. Moreover, “complete” means that all of the other problems in NL can be
reduced to this problem, without exceeding the space limitation. The proof was
done by Jones, Lien, and Laaser in 1976 [18], although they use a more general
model than DFAs, the deterministic generalized sequential machine with final
states, which includes an output function and an output alphabet.

NFAs are a more complicated situation than DFAs. They require much more
time and space. For example, recall that the subset construction technique –
which may be used to convert an NFA to a DFA as a first step in some of
the equivalence algorithms – requires exponential time in the worst case. In
fact, according to Garey and Johnson ( [8], p. 265), the problem of “FINITE
STATE AUTOMATON INEQUIVALENCE,” specifically whether two NFAs A1

and A2 “recognize different languages,” is not even known to be in NP. NP is
the class of problems which have polynomial time verifiers and can be decided
in nondeterministic polynomial time. Garey and Johnson indicate that the
problem is, however, known to be NP-hard, meaning that all problems in NP
can be reduced to this problem using some polynomial time function. In terms
of space, they state that testing the inequivalence of NFAs has been shown to
be PSPACE-complete. PSPACE is commonly defined as the class of languages
that are decidable in polynomial space on the length of the input. This can be
using either a deterministic or nondeterministic Turing machine; they both fall
into the same class, since PSPACE = NPSPACE. Note that NP is a subset of
PSPACE. For a problem to be PSPACE-complete, there are two requirements.
First, it must be in PSPACE. Second, all other problems in PSPACE must be
polynomial time reducible to it.

Garey and Johnson also indicate that the general problem of “REGULAR
EXPRESSION INEQUIVALENCE,” or “Do [regular expressions] E1 and E2

represent different regular languages?” has been shown to be NP-hard and
PSPACE-complete (p. 267). This makes sense since NFAs can easily be con-
verted to regular expressions in polynomial time, and vice versa. For details,
see a textbook such as Sipser, pp. 66 - 76. JFLAP supports these kinds of
conversions, and it can walk the student through them, step by step.

The original PSPACE-completeness proof is attributed to Kleene [19], before
PSPACE terminology was actually in use. Stockmeyer and Meyer also presented

62



several complexity results related to finite automata; for instance, see [30] and
[31].

4 JFLAP and other Finite Automata Tools

A wide variety of different software tools is available to demonstrate and ma-
nipulate finite automata.

JFLAP, the Java Formal Language and Automata Package, is the tool which
was selected for this project. JFLAP is a very popular Java 1.4 / 1.5 Swing
GUI from Duke University which allows the user to easily visualize and simulate
several different kinds of models, including finite automata, Mealy and Moore
machines, pushdown automata, Turing machines, and their corresponding lan-
guages. JFLAP documentation is readily available; a book [28] and an online
tutorial [17] have both been published. Recently, in October, 2007, JFLAP
won recognition as a finalist in the NEEDS Premier Award for Excellence in
Engineering Education Courseware competition, and its developers have con-
tinued to enhance JFLAP functionality since then. Version 6.2 from January,
2008 provides multiple layouts for finite automata. Version 6.4 from July, 2008
upgraded to Java 1.5 and incorporated new features such as an “add trap state
to DFA” option. This project extends the JFLAP GUI so that students can
get immediate feedback as they enter their models into the system. They can
verify that their NFA matches the language of an NFA defined in another file
(presumably an answer key file supplied by the instructor) and receive a witness
string if it does not.

Since JFLAP stores DFA/NFA models in simple XML files with a .jff exten-
sion, it was readily feasible to incorporate the grading program into the existing
RIT “try” submission/grading software [26], so that teachers can create tests
and homework assignments. The .jff files can be sent in to “try,” or if the
instructor prefers, they can just use the stand-alone Java grading program by
itself. Instructions are available in the User’s Guide. The approach was to use
existing JFLAP code to read in and parse the files. The XML contains de-
scriptions of the states and transitions, and these can be instantiated in Java in
order to determine whether or not two finite automata are equivalent. Note that
the .jff files require tags specifying graphical X-Y coordinates, but the grading
program will essentially ignore the coordinates as it has no need to display the
automata.

Several other nice tools had been briefly reviewed before selecting JFLAP.
For example:

• One program is the Visual Automata Simulator program by Jean Bovet [3].
Since it is simpler and more user-friendly than JFLAP, it has a smaller
learning curve for the student, but it also has fewer features. Its appeal-
ing interface allows the user to easily create and run DFAs, NFAs, and
TMs. Although this program may be preferable to JFLAP for a very
quick introduction to these models, it may not be as useful as a tool for
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an entire quarter-long theory of computing course. Moreover, the XML
files which are used to store the models are far more complex than those
for JFLAP, and they contain references to program-specific code (Java ob-
jects). Therefore, any program to grade student submissions from the Vi-
sual Automata Simulator would be permanently tied to the original source
code, and it may be more complex to write than a grader for JFLAP.

• The Finite State Automata Utilities Toolbox [33] was written in Prolog,
but Java has the advantage of being cross-platform.

• The Finite State Automaton Applet [7] is very basic; although it allows the
user to step through a string, it does not offer features such as conversion
between NFAs and DFAs. It also does not save the models to an export
file, so automated grading would not be very feasible or convenient.

• Prof. Toida and other contributors at Old Dominion University have
created several useful interactive Web exercises [32] to help students learn
about FAs and other concepts. For example, there is a convenient regular
expression equivalence checker, and there are several questions regarding
DFAs and NFAs, including conversions. The student can request feedback
immediately on their responses. However, these tools are not designed for
the creation and grading of exams, since there is a fixed sequence of specific
questions which has been published to the Web, and student input is not
stored as they go through the lesson. In addition, it is awkward for the
student to type in information using the notation for the state transition
table. The JFLAP GUI is a more intuitive, quicker way to enter FAs.

• Graduate students and teachers have previously undertaken a large num-
ber of other projects to electronically demonstrate and manipulate finite
automata and other models. For one example of thesis work, see the Java
Computability Toolkit, or JCT [27].

• Moreover, an article about a Language Emulator toolkit even presents a
“Comparative Table” of seven instructional tools ( [34], p. 137), most of
which are not mentioned above.

Note that these programs are not generally designed to allow submission and
grading of problems, with the possible exception of FAdo, which uses a naive
algorithm, discussed in “Equivalence to Grade Assignments” above. JFLAP
appears to be one of the most recognized and established programs, so it is a
good choice for this project. It does have an equivalence checker already, but
its performance could be improved by replacing the existing Java classes with a
faster algorithm or a faster implementation. Moreover, the grading utility may
be useful at RIT, and perhaps at other universities where JFLAP is part of the
instructional toolbox.
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5 Conclusions

In this project, several different equivalence-testing algorithms for DFAs and
NFAs were discussed. The time complexity to check two DFAs for equivalence
ranged from a polynomial on n, such as O(n4), to essentially linear on n, where
n is the total number of states in the two automata. It was observed that
the time complexity (chiefly the exponent on the polynomial on n) could be
significantly impacted not only by the underlying algorithm, but also by the
details of how the algorithm was physically implemented. To reduce runtime,
unnecessary calls should always be avoided.

In order to provide detailed feedback to students, a modification to the table-
filling algorithms was suggested so that a witness string could be produced in
cases where two finite automata were found to be inequivalent (for example,
if the student had an incorrect DFA which did not match the answer key).
A similar modification was then proposed for the faster O(n lg n) Hopcroft al-
gorithm and for the near-linear algorithm; these two revised algorithms were
physically implemented in Java to work with JFLAP .jff files, which represent
models such as finite automata. Scripts and detailed instructions were provided
in the User’s Guide to allow instructors to use the new grading tool with the
“try” submission/grading system at RIT. A menu option was also added to the
JFLAP program to obtain a witness directly within the GUI. Moreover, the
program was designed so that it could be run standalone from the command
line, if so desired. In verbose mode, the user is able to trace the operation of the
two different equivalence algorithms and see exactly how the witness strings are
formed, or find out why the two automata being compared are truly equivalent.

6 Future Work

These are some topics which could be considered for future research projects:

• Additional equivalence-checking algorithms could be described and com-
pared to the ones already contained in this report. For instance, it is
possible that an algorithm to check equivalence of NFAs directly, without
conversion to DFA format, may exist. Certainly equivalence algorithms
for other types of finite automata could be considered, if models beyond
DFAs and NFAs were to be researched. For large automata, approximate
equivalence may even be of interest. As described above, it also may be
possible to write a new algorithm using the inequivalence of any reachable
states in the DFAs, not just the (in)equivalence of the start states.

• State complexity considerations could be discussed. For example, in the
subset construction algorithm, it would be interesting to compare the size
(number of states) of the original NFA against the size of the DFA which is
typically produced. Different types of regular languages could be investi-
gated to find best and worst case scenarios. These could be experimentally
tested to empirically confirm the expected behavior.
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• More work could be done on the JFLAP GUI to set up exams to be stored
and executed within the program.

• JFLAP could also be extended to provide witnesses for regular expressions.

• It might be useful to set up encrypted JFLAP .jff answer files for students
to test against their homework solutions. This would allow them to see
a witness string as feedback, without revealing the full answer to the
assignment. For now, “try” can meet this need.

• Significant performance improvements could be implemented in JFLAP.
However, student NFAs are usually pretty small, so it may not make a
significant difference to the user-perceived run time.

• Different equivalence-checking algorithm implementations could be coded
and timed. It would be interesting to compare them on different categories
of DFAs/NFAs. (Again, they would have to be fairly large models to show
a significant impact on the run time.)

• The “try” version for Windows could be investigated, and setup instruc-
tions could be provided for the new grading tool.
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