
1

Part III

 Synchronization
 Critical Section and Mutual Exclusion

Fall 2016

The question of whether computers can think is just like

the question of whether submarines can swim

Edsger W. Dijkstra

2

Process Synchronization Topics

 Why is synchronization needed?

 Race Conditions

 Critical Sections

 Pure Software Solutions

 Hardware Support

 Semaphores

 Race Conditions, Revisited

 Monitors

3

Synchronization Needed! 1/6

 int a[3] = { 3, 4, 5};

 Process 1 Process 2

a[1] = a[0] + a[1]; a[2] = a[1] + a[2];

a[3] = { 3, ?, ? }

Statement level execution interleaving

4

Synchronization Needed! 2/6

 int a[3] = { 3, 4, 5};

 Process 1 Process 2

a[1] = a[0] + a[1]; a[2] = a[1] + a[2];

If process 1 updates a[1] first, a[1] is 7, and a[]={3,7,5}

Then, process 2 uses the new a[1] to computes a[2], and

 a[]={3,7,12}

If process 2 uses a[1] first, now a[2] is 9, and a[]={3,4,9}

Then, process 1 computes a[1], and a[]={3,7,9}

Results are non-deterministic!

5

Synchronization Needed! 3/6

int Count = 10;

Process 1 Process 2

Count++; Count--;

Count = 9, 10 or 11?

Higher-level language statements

are not atomic

6

Synchronization Needed! 4/6

int Count = 10;

Process 1 Process 2

LOAD Reg, Count LOAD Reg, Count

ADD #1 SUB #1

STORE Reg, Count STORE Reg, Count

The problem is that the execution flow may be switched in

the middle. Results become non-deterministic!

instruction level execution interleaving

7

Synchronization Needed! 5/6

LOAD 10 10

LOAD 10 10

SUB 9 10

ADD 11 10

STORE 11 11

STORE 9 9

 Inst Reg Memory Inst Reg Memory
Process 1 Process 2

overwrites the previous value 11

Always use instruction level interleaving to show race conditions

8

Synchronization Needed! 6/6

LOAD 10 10

ADD 11 10

LOAD 10 10

SUB 9 10

STORE 9 9

STORE 11 11

 Inst Reg Memory Inst Reg Memory
Process 1 Process 2

overwrites the previous value 9

Always use instruction level interleaving to show race conditions

9

Race Conditions

 A Race Condition occurs, if

two or more processes/threads manipulate a
shared resource concurrently, and

the outcome of the execution depends on the
particular order in which the access takes
place.

 Synchronization is needed to prevent race
conditions from happening.

 Synchronization is a difficult topic. Don’t miss
classes; otherwise, you will miss a lot of things.

10

Execution Sequence Notes: 1/3

 You must always use instruction
level interleaving to demonstrate the
existence of race conditions, because

a) higher-level language statements are not
atomic and can be switched in the middle
of execution

b) instruction level interleaving can show
clearly the “sharing” of a resource among
processes and threads.

11

Execution Sequence Notes: 2/3

 int a[3] = { 3, 4, 5};

 Process 1 Process 2

a[1] = a[0] + a[1]; a[2] = a[1] + a[2];

Process 1 Process 2 Array a[]

a[1]=a[0]+a[1] { 3, 7, 5 }

a[2]=a[1]+a[2] { 3, 7, 12 }

Process 1 Process 2 Array a[]

a[2]=a[1]+a[2] { 3, 4, 9 }

a[1]=a[0]+a[1] { 3, 7, 9 }

Execution Sequence 1

Execution Sequence 2

There is no

 concurrent sharing,

 not a valid example

 for a race condition.

12

Execution Sequence Notes: 3/3

int Count = 10;

Process 1 Process 2
LOAD Reg, Count LOAD Reg, Count

ADD #1 SUB #1

STORE Reg, Count STORE Reg, Count

Process 1 Process 2 Memory

LOAD Reg, Count 10

LOAD Reg, Count 10

SUB #1 10

ADD #1 10

STORE Reg, Count 11

STORE Reg, Count 9

variable

count is

shared

concurrently

here

13

Critical Section

 A critical section, CS, is a section of code

in which a process accesses shared resources.

 int count; // shared

count++; count--; cout << count;

These are critical sections since count is a shared resource

process 1 process 2 process 3

14

Mutual Exclusion

 To avoid race conditions, the execution of

critical sections must be mutually

exclusive (e.g., at most one process can be in

its critical section at any time).

 The critical-section problem is to design

a protocol with which processes can use to

cooperate and ensure mutual exclusion.

15

The Critical Section Protocol

 A critical section protocol

consists of two parts: an

entry section and an exit

section.

 Between them is the

critical section that must

run in a mutually

exclusive way.

do {

} while (1);

entry section

exit section

critical section

16

Good Solutions to the CS Problem

 A good solution to the critical section problem

must satisfy the following three conditions:

Mutual Exclusion

Progress

Bounded Waiting

 Moreover, the solution cannot depend on

CPU’s relative speed, timing, scheduling policy

and other external factors.

17

Mutual Exclusion

 If a process P is executing in its critical section,

no other processes can be executing in their

corresponding critical sections.

 The entry protocol should be able to block

processes that wish to enter but cannot.

 When the process that is executing in its critical

section exits, the entry protocol must be able to

know this fact and allows a waiting process to

enter.

18

Progress

 If no process is executing in its critical section and

some processes want to enter their corresponding

critical sections, then

1. Only those processes that are waiting to enter

can participate in the competition (to enter

their critical sections) and no other processes

can influence this decision.

2. This decision cannot be postponed indefinitely

(i.e., finite decision time). Thus, one of the

waiting processes can enter its critical section.

19

Bounded Waiting

 After a process made a request to enter its

critical section and before it is granted the

permission to enter, there exists a bound on

the number of turns that other processes are

allowed to enter.

 Finite is not the same as bounded.

The former means any value you can write

down (e.g., billion, trillion, etc) while the latter

means this value has to be no larger than a

particular one (i.e., the bound).

20

Progress vs. Bounded Waiting

 Progress does not imply Bounded Waiting:

Progress says a process can enter with a finite

decision time. It does not say which process can

enter, and there is no guarantee for bounded waiting.

 Bounded Waiting does not imply Progress:

Even through we have a bound, all processes may

be locked up in the enter section (i.e., infinite

decision time).

 Therefore, Progress and Bounded Waiting

are independent of each other.

21

A Few Related Terms: 1/7

 Deadlock-Freedom: If two or more

processes are trying to enter their critical sections,

one of them will eventually enter. This is

Progress without the “outsiders having no

influence” condition.

 Since the enter section is able to select a process

to enter, the decision time is certainly finite.

22

A Few Related Terms: 2/7

 r-Bounded Waiting: There exists a fixed

value r such that after a process made a request

to enter its critical section and before it is

granted the permission to enter, no more than r

other processes are allowed to enter.

 Therefore, bounded waiting means there is a r

such that the waiting is r-bounded.

23

A Few Related Terms: 3/7

 FIFO: No process that is about to enter its

critical section can pass an already waiting

process. FIFO is usually referred to as 0-

bounded.

 Linear-Waiting (1-Bounded Waiting):

No process can enter its critical section twice

while there is a process waiting.

24

A Few Related Terms: 4/7

 Starvation-Freedom: If a process is trying

to enter its critical section, it will eventually enter.

 Questions:

1. Does starvation-freedom imply deadlock-freedom?

2. Does starvation-freedom imply bounded-waiting?

3. Does bounded-waiting imply starvation-freedom?

4. Does bounded-waiting AND deadlock-freedom imply

starvation-freedom?

25

A Few Related Terms: 5/7

 Question (1): Does starvation-freedom imply

deadlock-freedom?

 Yes! If every process can eventually enter its

critical section, although waiting time may vary,

it means the decision time of selecting a process is

finite. Otherwise, all processes would wait in the

enter section.

26

A Few Related Terms: 6/7

 Question (2): Does starvation-freedom imply

bounded-waiting?

 No! This is because the waiting time may not be

bounded even though each process can enter its

critical section.

27

A Few Related Terms: 7/7

 Question (3): Does bounded-waiting imply

starvation-freedom?

 No. Bounded-Waiting does not say if a process

can actually enter. It only says there is a bound.

For example, all processes are locked up in the

enter section (i.e., failure of Progress).

 We need Progress + Bounded-Waiting to

imply Starvation-Freedom (Question (4)).

In fact, Progress + Bounded-Waiting is

stronger than Starvation-Freedom. Why?

28

The End

