
COMP481 Review Problems
Turing Machines and (Un)Decidability

Luay K. Nakhleh

NOTES:

1. In this handout, I regularly make use of two problems, namely

• The Halting Problem, denoted by HP , and defined as

HP = {〈M, w〉|M is a TM and it halts on string w}.

• The complement of the Halting Problem, denoted by HP , and defined as

HP = {〈M, w〉|M is a TM and it does not halt on string w}.

2. I use “decidable” and “recursive” interchangeably, and use “semi-decidable” and “recursively enu-
merable” interchangeably. I use R for recursive, and RE for recursively enumerable.

3. Recall: “≤m” denotes mapping reducibility. For example, L1 ≤m L2 means “L1 mapping reduces to
L2”.

4. To show a language L is not in R (not in RE), it suffices to show that L′ ≤m L for some L′ that is not
in R (not in RE). From the theorem we’ve learned, it follows that L is not in R (not in RE).

5. Showing L′ ≤m L is equivalent to showing L′ ≤m L.

6. Rice’s Theorem (the version I use):

“Let C be a proper, nonempty subset of RE. Then, the language

LC = {〈M〉 : L(M) ∈ C}

is not recursive.”

So, to show a language L is not recursive using Rice’s Theorem, I pick the appropriate C (i.e., a C
such that LC = L), prove that (1) C ⊆ RE, (2) C 6= RE, and (3) C 6= ∅. Finally, I conclude that LC

is not recursive.

THE PROBLEMS:

1. For each of the following languages, state whether each language is (I) recursive, (II) recursively
enumerable but not recursive, or (III) not recursively enumerable. Prove your answer.

• L1 = {〈M〉|M is a TM and there exists an input on which M halts in less than |〈M〉| steps}.
– R. M∗ that decides the languages works as follows on input 〈M〉. It first finds the length of
〈M〉, and stores it. Then, it runs M on all inputs of length at most |〈M〉|, for at most |〈M〉|
steps, and accepts if M accepts at least one of the strings within the specified number of
steps.
You might wonder why we limited the length of the strings. Since we bound the number of
steps that M runs on an input, then there is no point on looking at any strings that are longer

1

than that number, since if a TM is allowed to run for at most c steps, it is not possible for
that TM to “process” any input symbol beyond the cth symbol!
The number of possible inputs is finite, and the number of steps M runs on each input is
finite, therefore M is guaranteed to halt and decide the language.

• L2 = {〈M〉|M is a TM and |L(M)| ≤ 3}.
– Not RE. We prove this by a reduction from HP . τ(〈M, x〉) = 〈M ′〉. M ′ on input w: it

erases its input, copies M and x to its tape, and runs M on x; it accepts if M halts on x.
We now prove the validity of reduction:
∗ 〈M, x〉 ∈ HP ⇒ M does not halt on x ⇒ M ′ does not accept any input ⇒ |L(M ′)| ≤

3 ⇒ M ′ ∈ L2.
∗ 〈M, x〉 /∈ HP ⇒ M halts on x ⇒ M ′ accepts all inputs ⇒ |L(M ′)| > 3 ⇒ M ′ /∈ L2.

– GOOD EXERCISE: What happens if the property was |L(M)| = 2? Prove your answer.
• L3 = {〈M〉|M is a TM and |L(M)| ≥ 3}.

– RE. M∗ that semidecides the language, runs M on all inputs in an interleaved mode, and
halts whenever 3 inputs have been accepted. Notice that M ∗ generates the input strings for
M one by one as they are needed (It is not allowed that M ∗ first generates all strings, and
then starts running M on them, since generating the inputs takes infinite time!).

– Not R. We prove this by a reduction from HP . τ(〈M, x〉) = 〈M ′〉. M ′ on input w works
as follows: It erases w, puts M and x on its tape, and runs M on x and accepts if M halts
on x.
We now prove the validity of the reduction:
∗ 〈M, x〉 ∈ HP ⇒ M halts on x ⇒ M ′ accepts all inputs ⇒ |L(M ′)| ≥ 3 ⇒ M ′ ∈ L3.
∗ 〈M, x〉 /∈ HP ⇒ M does not halt on x ⇒ M ′ does not accept any input ⇒ |L(M ′)| <

3 ⇒ M ′ /∈ L3.
• L4 = {〈M〉|M is a TM that accepts all even numbers}.

– Not RE. We prove this by a reduction from HP . τ(〈M, x〉) = 〈M ′〉. M ′ on input w: it
runs M on x for |w| steps; it rejects if M halts on x within |w| steps, and accepts otherwise.
We now prove the validity of the reduction:
∗ 〈M, x〉 ∈ HP ⇒ M does not halt on x ⇒ M ′ accepts all inputs, and in particular, all

even numbers ⇒ M ′ ∈ L4.
∗ 〈M, x〉 /∈ HP ⇒ M halts on x within k steps ⇒ M ′ rejects all inputs w whose length

is greater than or equal to k ⇒ M ′ rejects an infinite number of even numbers ⇒
M ′ /∈ L4.

– GOOD EXERCISE: What happens if the property was “M does not accept all even num-
bers”? What happens if the property was “M rejects all even numbers”? Prove your an-
swers.

• L5 = {〈M〉|M is a TM and L(M) is finite}.
– Not RE. We prove this by a reduction from HP . τ(〈M, x〉) = 〈M ′〉. M ′ on input w: it

runs M on x.
We now prove the validity of the reduction:
∗ 〈M, x〉 ∈ HP ⇒ M does not halt on x ⇒ M ′ does not accept any strings ⇒ L(M ′) is

finite ⇒ M ′ ∈ L5.

2

∗ 〈M, x〉 /∈ HP ⇒ M halts on x ⇒ M ′ accepts all strings ⇒ L(M ′) is infinite ⇒
M ′ /∈ L5.

• L6 = {〈M〉|M is a TM and L(M) is infinite}.
– Not RE. We prove this by a reduction from HP . τ(〈M, x〉) = 〈M ′〉. M ′ on input w: it

runs M on x for |w| steps; it rejects if M halts on x within |w| steps, and accepts otherwise.
We now prove the validity of the reduction:
∗ 〈M, x〉 ∈ HP ⇒ M does not halt on x ⇒ M ′ accepts all strings ⇒ L(M ′) is infinite
⇒ M ′ ∈ L6.

∗ 〈M, x〉 /∈ HP ⇒ M halts on x within k steps ⇒ M ′ rejects all strings whose length is
greater than or equal to k ⇒ L(M ′) is finite ⇒ M ′ /∈ L6.

• L7 = {〈M〉|M is a TM and L(M) is countable}.
– R. This is the language of all TM’s, since there are no uncountable languages (over finite

alphabets and finite-length strings).
• L8 = {〈M〉|M is a TM and L(M) is uncountable}.

– R. This is the empty set; there are no uncountable languages (over finite alphabets and
finite-length strings).

• L9 = {〈M1, M2〉|M1 and M2 are two TMs, and ε ∈ L(M1) ∪ L(M2)}.
– RE. M∗ that semidecides the language run the two machines on ε (it interleaves the run

between the machines), and accepts if at least one of them accepts.
– Not R. We prove this by a reduction from HP . τ(〈M, x〉) = 〈M ′, M ′〉. M ′ on input w: it

runs M on x and accepts if M halts on x.
We now prove the validity of the reduction:
∗ 〈M, x〉 ∈ HP ⇒ M halts on x ⇒ M ′ accepts all strings, and in particular it accepts ε
⇒ ε ∈ L(M ′) ∪ L(M ′) ⇒ 〈M ′, M ′〉 ∈ L9.

∗ 〈M, x〉 /∈ HP ⇒ M does not halt on x ⇒ M ′ does not accept any strings, and in
particular does not accept ε ⇒ ε /∈ L(M ′) ∪ L(M ′) ⇒ 〈M ′, M ′〉 /∈ L9.

• L10 = {〈M1, M2〉|M1 and M2 are two TMs, and ε ∈ L(M1) ∩ L(M2)}.
– RE. M∗ that semidecides the language run the two machines on ε (it interleaves the run

between the machines), and accepts if both of them accept.
– Not R. We prove this by a reduction from HP . τ(〈M, x〉) = 〈M ′, M ′〉. M ′ on input w: it

runs M on x and accepts if M halts on x.
We now prove the validity of the reduction:
∗ 〈M, x〉 ∈ HP ⇒ M halts on x ⇒ M ′ accepts all strings, and in particular it accepts ε
⇒ ε ∈ L(M ′) ∩ L(M ′) ⇒ 〈M ′, M ′〉 ∈ L10.

∗ 〈M, x〉 /∈ HP ⇒ M does not halt on x ⇒ M ′ does not accept any strings, and in
particular does not accept ε ⇒ ε /∈ L(M ′) ∩ L(M ′) ⇒ 〈M ′, M ′〉 /∈ L10.

• L11 = {〈M1, M2〉|M1 and M2 are two TMs, and ε ∈ L(M1) \ L(M2)}.
– Not RE. We prove this by a reduction from HP . τ(〈M, x〉) = 〈M1, M2〉. M1 is a TM that

halts and accepts on any input (i.e., L(M1) = Σ∗). M2 on input w: it runs M on x and
accepts if M halts on w.
We now prove the validity of the reduction:

3

∗ 〈M, x〉 ∈ HP ⇒ M does not halt on x ⇒ M2 does not accept any input ⇒ L(M1) \
L(M2) = Σ∗ ⇒ ε ∈ L(M1) \ L(M2) ⇒ 〈M1, M2〉 ∈ L11.

∗ 〈M, x〉 /∈ HP ⇒ M halts on x ⇒ M2 accepts all inputs ⇒ L(M1) \ L(M2) = ∅ ⇒
ε /∈ L(M1) \ L(M2) ⇒ 〈M1, M2〉 /∈ L11.

• L12 = {〈M〉|M is a TM, M0 is a TM that halts on all inputs, and M0 ∈ L(M)}.
– RE. M∗ that semidecides the language runs M on M0 and halts if M accepts M0.
– Not R. We prove this by Rice’s Theorem. Let C = {L ∈ RE : M0 ∈ L}.

C ⊆ RE: trivial.
C 6= ∅: e.g., Σ∗ ∈ C.
C 6= RE: e.g., ∅ ∈ RE \ C.

Therefore, LC = {〈M〉 : L(M) ∈ C} /∈ R. But, LC = {〈M〉 : M0 ∈ L(M)}; therefore,
L12 is not recursive.

• L13 = {〈M〉|M is a TM, M0 is a TM that halts on all inputs, and M ∈ L(M0)}.
– R. M∗ that decides L13 runs M0 on M and accepts if M0 accepts M and rejects if M0

rejects M . The difference between this and L12 is that here M0, the machine that runs on
the input, is guaranteed to always halt; however, in L12, M , the machines that runs on the
input, might not halt!

• L14 = {〈M, x〉|M is a TM, x is a string, and there exists a TM, M ′, such that x /∈ L(M) ∩
L(M ′)}.

– R. For any TM, M , there is always a TM, M ′, such that x /∈ L(M)∩L(M ′)}. In particular,
take M ′ to be the machine that rejects all inputs. So, this is basically the language of all
TM’s.

• L15 = {〈M〉|M is a TM, and there exists an input on which M halts within 1000 steps}.
– R. The proof is very similar to L1.

• L16 = {〈M〉|M is a TM, and there exists an input whose length is less than 100, on which M
halts}.

– RE. M∗ that semidecides the language runs M on all strings of length at most 100 in an
interleaved mode, and halts if M accepts at least one.

– Not R. We prove this by a reduction from HP . τ(〈M, x〉) = 〈M ′〉. M ′ on input w: it runs
M on x.
Prove the validity of this reduction! It’s similar to the other reductions from HP that we
used before.

• L17 = {〈M〉|M is a TM, and M is the only TM that accepts L(M)}.
– R. This is the empty set, since every language has an infinite number of TMs that accept it.

• L18 = {〈k, x, M1, M2, . . . , Mk〉|k is a natural number, x is a string, Mi is a TM for all 1 ≤ i ≤
k, and at least k/2 TM’s of M1, . . . , Mk halt on x}.

– RE. M∗ that semidecides the language runs the k machines (it interleaves the runs of the
machines) on x, and accepts if at least k/2 of them accept.

– Not R. We prove this by a reduction from HP . τ(〈M, x〉) = 〈2, x, M ′, M ′〉). M ′ runs M
on x, and accepts if M halts on x. We now prove the validity of the reduction:
∗ 〈M, x〉 ∈ HP ⇒ M halts on x ⇒ M ′ accepts x ⇒ 〈2, x, M ′, M ′〉 ∈ L18.

4

∗ 〈M, x〉 /∈ HP ⇒ M does not halt on x ⇒ M ′ does not accept x ⇒ 〈2, x, M ′, M ′〉 /∈
L18.

• L19 = {〈M〉|M is a TM, and |M | < 1000}.
– R. In this question, we are talking about all the descriptions of Turing machines using a

fixed alphabet (of finite size, of course), i.e., TM’s that are encoded as input to the universal
TM. So, L19 is finite, and hence recursive.

• L20 = {〈M〉|∃x, |x| ≡5 1, and x ∈ L(M)}.
– RE. A TM, M∗, that semidecides the language runs M on all inputs (in an interleaved

mode) x, such that |x| ≡5 1, and halts if M accepts at least one such string.
– NOT R. Use Rice’s theorem. Take C = {L ∈ RE|∃x, |x| ≡5 1, and x ∈ L}. It’s easy to

prove that (1) C ⊆ RE, (2) C 6= ∅, and (3) C 6= RE. Hence, LC = {〈M〉|L(M) ∈ C} =
{〈M〉|∃x, |x| ≡5 1, and x ∈ L(M)} 6∈ R.

• L21 = {〈M〉|M is a TM, and M halts on all palindromes}.
– NOT RE. Some of you might have seen the application of Rice’s theorem to this language,

which proves the languages is not in R. Nevertheless, this languages is also not in RE, and
we prove that using reductions. Remember: Rice’s theorem does not prove a language is not
in RE! We reduce HP to L21. The reduction function τ is as follows: τ(〈M, w〉) = 〈M ∗〉.
M∗ on input x works as follows: M ∗ runs M on w for |x| steps: if M halts on w within |x|
steps, reject, otherwise accept.
Prove the validity of the reduction.

• L22 = {〈M〉|M is a TM, and L(M) ∩ {a2n

|n ≥ 0} is empty}.
– NOT RE. This language contains all TM’s that do not accept any string of the form a2n .

The proof is by a reduction from HP . τ(〈M, w〉) = M ∗.
M∗ on input x: erase x, and run M on w. If M halts on w then M ∗ accepts.
Prove the validity of the reduction.

• L23 = {〈M, k〉|M is a TM, and |{w ∈ L(M) : w ∈ a∗b∗}| ≥ k}.
– RE. Easy; prove it yourself.
– Not R. Also easy; prove it yourself.

• L24 = {〈M〉|M is a TM that halts on all inputs and L(M) = L′ for some undecidable language
L′}.

– R. Since M halts on all inputs, then L(M) is decidable, and hence it can’t be that L(M)
equals some undecidable language L′. Therefore, L24 = ∅ which is recursive.

• L25 = {〈M〉|M is a TM, and M accepts (at least) two strings of different lengths}.
– RE. M∗ that semidecided the language runs M on all inputs in an interleaved mode, halts

and accepts once M accepts two strings of different lengths.
– NOT R. Reduce the halting problem, or use Rice’s theorem. Both are easy to use with this

language.
– GOOD EXERCISE: What happens if we replace “at least” by “exactly”. Prove your

answer.
• L26 = {〈M〉|M is a TM such that both L(M) and L(M) are infinite}.

5

– NOT RE. Reduce HP . τ(〈M, w〉) = 〈M ∗〉.
M∗ on input x works as follows:
if x is of odd length, accept.
if x is of even length, run M on w. If M halts, accept.

Let’s prove the validity of this one.
〈M, w〉 ∈ HP ⇒ M does not halt on w ⇒ M ∗ accepts all odd-length strings and rejects
all even-length strings ⇒ L(M) contains all odd-length strings, i.e., is infinite, and L(M)
contains all even-length strings, i.e., is infinite ⇒ 〈M ∗〉 ∈ L26.
M /∈ HP ⇒ M halts on w ⇒ M ∗ accepts all strings ⇒ L(M) = ∅ i.e., L(M) is finite,
and hence 〈M ∗〉 /∈ L26.

• L27 = {〈M, x, k〉|M is a TM, and M does not halt on x within k steps}.
– R. Easy.

• L28 = {〈M〉|M is a TM, and |L(M)| is prime}.
– Not RE. Reduce HP as follows. τ(〈M, w〉) = 〈M ∗〉. M∗ on input x:

if x is one of the first three strings (in lexicographic order) of Σ∗, then accept.
Otherwise, run M on w. If M halts on w, and x is the 4th string in Σ∗ accept; otherwise,
reject.

Prove the validity (you will see that if M does not halt on w, then M ∗ accepts only 3 strings,
which is a prime number of strings, and otherwise, it accepts 4 strings, which is not a prime
number of strings. Formalize this!)

• L29 = {〈M〉| there exists x ∈ Σ∗ such that for every y ∈ L(M), xy /∈ L(M)}.
– Not RE. Reduce HP as follows. τ(〈M, w〉) = 〈M ∗〉. M∗ on input x:

it runs M on w; if M halts on w, M ∗ accepts.
If 〈M, w〉 ∈ HP then L(M ∗) is empty, and hence 〈M ∗〉 ∈ L29. WHY?
If 〈M, w〉 /∈ HP then L(M ∗) = Σ∗, and hence 〈M ∗〉 /∈ L29. WHY?

• L30 = {〈M〉| there exist x, y ∈ Σ∗ such that either x ∈ L(M) or y /∈ L(M)}.
– Recursive. This is the language of all Turing machines!
– GOOD EXERCISE: Solve the problem where we replace the “or” by “and”.

• L31 = {〈M〉| there exists a TM M ′ such that 〈M〉 6= 〈M ′〉 and L(M) = L(M ′)}.
– Recursive. This is the language of all Turing machines! (compare to L17).

• L32 = {〈M1, M2〉|L(M1) ≤m L(M2)}.
– Not RE. Reduction from HP . τ(〈M, w〉) = 〈M1, M2〉.

M2 on input x: reject. (i.e., L(M2) = ∅).
M1 on input y: run M on w; if M halts, check whether y is of the form 〈M ′, z〉, where M ′

is a TM, and z is a string. If so, run M ′ on z. If M ′ halts, M1 accepts.
You can now prove that: (1) If 〈M, w〉 ∈ HP then L(M1) = ∅ (in this case L(M1) ≤m

L(M2) since ∅ ≤m ∅, and hence 〈M1, M2〉 ∈ L32), and (2) if 〈M, w〉 /∈ HP then L(M1) =
HP (in which case L(M1) 6 ≤mL(M2), since HP 6 ≤m∅; why?).
Therefore, HP ≤m L32 and hence L32 is not in RE.

• L33 = {〈M〉|M does not accept any string w such that 001 is a prefix of w}.

6

– Not RE. Simple reduction from HP . τ(〈M, w〉) = M ∗, where M∗ on x:
runs M on w; if M halts on w, M ∗ accepts.
Prove the validity of the reduction.

• L34 = {〈M, x〉|M does not accept any string w such that x is a prefix of w}.
– Not RE. Proof similar to L33.

• L35 = {〈M, x〉|x is prefix of 〈M〉}.
– Recursive. The machine M ∗ that decides the language simply checks whether the string x

is a prefix of the string 〈M〉.
• L36 = {〈M1, M2, M3〉|L(M1) = L(M2) ∪ L(M3)}.

– Not RE. Reduction from HP . τ(〈M, w〉) = 〈M1, M2, M3〉, where
M1 on x: runs M on w; if M halts, M1 accepts.
M2 on y: reject. (i.e., L(M2) = ∅).
M3 on z: reject. (i.e., L(M3) = ∅).
Prove the validity of the reduction.

• L37 = {〈M1, M2, M3〉|L(M1) ⊆ L(M2) ∪ L(M3)}.
– Not RE. Reduction from HP . τ(〈M, w〉) = 〈M1, M2, M3〉, where

M1 on x: runs M on w; if M halts, M1 accepts.
M2 on y: if y is the first string in Σ∗ accept; else reject.
M3 on z: reject.
Prove the validity of the reduction.

• L38 = {〈M1〉| there exist two TM’s M2 and M3 such that L(M1) ⊆ L(M2) ∪ L(M3)}.
– Recursive. This is the language of all Turing machines (simply take M2 to be the machine

that accepts everything, for example).
• L39 = {〈M, w〉|M is a TM that accepts w using at most 2|w| squares of its tape}.

– Recursive. Let m be the number of states in M , and k be the size of the alphabet that
M uses, and r = |w|. If M uses at most 2r squares of its tape, then there are at most
α = mk2r

2r configurations (why?). If M runs on w for more than α steps, and does not
use more than 2r squares of its tape, then M must be in the one configuration at least twice
(pigeonhole principle), in which case M would enter an infinite loop on input w.
Based on this, we design a machine M ∗ that decides L39 that works as follows:
M∗ runs M on w for at most α + 1 steps.
If M accepts w within α steps with using at most 2r squares, M∗ halts and accepts.
If M rejects w within α steps with using at most 2r squares, M∗ halts and rejects.
If M goes beyond 2r squares, M∗ halts and rejects. If M does not halt and does not go
beyond 2r squares, M∗ rejects.

2. If A ≤m B and B is a regular language, does that imply that A is a regular language?
NO! Take A = {anbn : n ≥ 0}, and B = a∗, and let the reduction from A to B be: if w is of the
form anbn, erase all the b’s; otherwise, return b.

3. Recall the language ATM = {〈M, w〉|M is a TM, and M accepts w}. Consider the language

J = {w|w = 0x for some x ∈ ATM or w = 1y for some y ∈ ATM}.

7

Using De Morgan’s law,

J = {w|w = ε or w = 1x for some x ∈ ATM or w = 0y for some y ∈ ATM}.

(a) Show that J is not in RE.
Reduce ATM to J : τ(w) = 1w. Prove the validity of the reduction.

(b) Show that J is not in RE.
Reduce ATM to J : τ(w) = 0w. Prove the validity of the reduction.

(c) Show that J ≤m J .

τ(w) =

{

1x if w = 0x
0x if w = 1x

Prove the validity of the reduction.

4. Show that if a language A is in RE and A ≤m A, then A is recursive.
Since A ≤m A it follows that A ≤m A, and since A is in RE, it follows that A is also in RE. Since
both A and A are in RE, it follows that A is in R (this follows from a theorem you learned in class).

5. A language L is RE-Complete if:

• L ∈ RE, and
• L′ ≤m L for all L′ ∈ RE.

Recall the following languages:

LΣ∗ = {〈M〉| L(M) = Σ∗}
HP = {〈M, w〉| M halts on w}

(a) Is LΣ∗ RE-Complete or not? Prove your answer.
No. LΣ∗ is not in RE (Prove it by a reduction from HP—similar to the reduction used with L6).
Hence, LΣ∗ is not RE-Complete.

(b) Is HP RE-Complete or not? Prove your answer.
Yes. You’ve seen in class that HP is in RE. We now prove that every language L ∈ RE reduces
to HP .
If L is in RE, then there exists a TM, M that semidecides it. The reduction from L to HP is as
follows:
τ(w) = 〈M, w〉, where M is the machine that semidecides L.
Prove the validity of the reduction. It’s simple!

6. Let L1, L2 be two decidable languages, and let L be a language such that L1 ⊆ L ⊆ L2. Is L
decidable or not? Prove your answer.
May be. Take L1 = ∅ and L2 = Σ∗, both of which are decidable. We know that L1 ⊆ HP ⊆ L2,
and HP is not decidable. On the other hand, we know L1 ⊆ a∗ ⊆ L2, and a∗ is decidable.

7. Let L be a language RE. Show that L′ = {x|∃y : (x, y) ∈ L} is also RE.
Assume M is a TM that semidecides L; we construct a TM, M ′, that semidecides L′ (that uses M as
a “black box”). Let the strings in Σ∗ be w1, w2, The TM M ′ on input x works as follows:

8

For i = 1 to “∞”
Run M for i steps on each of the strings (x, w1), (x, w2), . . . , (x, wi).
If M accepts at least one of the strings, M ′ halts and accepts.

Prove that M ′ indeed semi-decides L′.

8. Prove or disprove: there exists an undecidable unary language (a unary language is a subset of 1∗).
There exists an undecidable unary language, since the number of unary languages is uncountable
whereas the number of decidable languages is countably infinite! You need to know (understand and
be able to prove) these facts.

9. PROBLEM FORMULATION.

(a) Consider the problem of testing whether a TM M on an input w ever attempts to move its head
left when its head is on the leftmost tape cell. Formulate this problem as a language and show
that it is undecidable.
The language is:

L = {〈M, w〉|M attempts to move its head left when its head is on the leftmost tape cell}.
We prove by contradiction that L is undecidable. Assume L was decidable, and let M ∗ be a TM
that decides it. We construct a TM, M ′, that decides HP (the halting problem), i.e., we show
HP is decidable as well, which is a contradiction.
The TM M ′ on input 〈M, w〉:

i. build a TM, M ′′, from M , where M ′′ shifts w one tape cell to the right, and mark the
leftmost tape cell with].

ii. TM M ′′ runs M on w.
iii. If M ′′ encounters the] symbol during the run of M on w, then M ′′ moves to the right and

simulates M reaching the leftmost tape cell.
iv. If M halts and accepts, M ′′ simulates moving its head all the way to the left and off the

leftmost tape cell
The TM M ′ runs M∗ on the input 〈M ′, w〉. If M∗ accepts, M ′ accepts; otherwise, M ′ rejects.
Notice that M∗ always halts (accepts or rejects) since we assumed it is a decider.
You can prove now that M ′′ moves its head off of the leftmost tape cell iff M halts (and accepts)
w. It then follows that M ′ decides HP , and hence HP is decidable, which is a contradiction.
Therfore, the language L is not decidable.

(b) Consider the problem of testing whether a TM M on an input w ever attempts to move its head
left at any point during its computation on w. Formulate this problem as a language and show
that it is decidable.
The language is:

L = {〈M, w〉|M moves its head left on input w}.
The trick to proving this language is decidable is to notice that M moves its head left on an input
w if and only if it does so within the first |w| + |Q| + 1 steps of its run on w, where |Q| is the
number of states of the machine M . Prove it!
Therefore, to decide whether an input 〈M, w〉 is an instance of L, the decider M ∗ simply runs M
on w for at most |w|+ |Q|+ 1 steps and accepts iff M does moves its head left (the correctness
of this construction follows immediately after you prove the validity of the above trick).

9

10. Let A and B be two disjoint languages. We say that language C separates A and B if A ⊆ C and
B ⊆ C. Show that any two disjoint co-RE languages are separable by some decidable language.
A is in RE, and M1 semi-decides it.
B is in RE, and M2 semi-decides it.
We describe language C by a TM, M , that decides it:
M on input w:
run M1 and M2 on w (in interleaved mode).
If M1 accepts, M rejects; If M2 accepts, M accepts.
Notice that M always halts; we take C = L(M).

11. Suppose there are four languages A, B, C, and D. Each of the languages may or may not be recur-
sively enumerable. However, we know the following about them:

• There is a reduction from A to B.
• There is a reduction from B to C.
• There is a reduction from D to C.

Below are four statements. Indicate whether each one is

(a) CERTAIN to be true, regardless of what problems A through D are.
(b) MAYBE true, depending on what A through D are.
(c) NEVER true, regardless of what A through D are.

Please, justify your answer!

(a) A is recursively enumerable but not recursive, and C is recursive.
NEVER TRUE. reductions are transitive, and since A reduces to B, and B reduces to C, we
conclude that A reduces to C. Therefore, if A /∈ R, it can’t be that C ∈ R.

(b) A is not recursive, and D is not recursively enumerable.
MAYBE TRUE.

(c) If C is recursive, then the complement of D is recursive.
CERTAIN to be TRUE. If C is in R, and since D reduces to C, then by the reduction theorem,
it follows that D is in R. Since R is closed under complement, then the complement of D is also
in R.

(d) If C is recursively enumerable, then B ∩ D is recursively enumerable.
CERTAIN to be TRUE. C is in RE implies that both B and D are in RE (by the reduction
theorem), and so is their intersection (RE langs are closed under intersection).

12. Recall the following definition: A grammar G computes a function f iff for all u, v ∈ Σ∗,

SuS⇒G
∗v iff f(u) = v.

Show a grammar that computes the following functions, defined on unary representations of natural
numbers as follows:

10

• f1(n) = 3n + 5.
Solution: S1 → 111S, SS → 11111.

• f2(n) =











1 if n ≡ 0 (mod 3)
11 if n ≡ 1 (mod 3)

111 if n ≡ 2 (mod 3)
Solution: 111 → ε, SS → 1, S1S → 11, S11S → 111.

• f3(n) = n − 1.
S1 → ε, 1S → 1.

• f4(n) = n/2. Assume n is even.
S11 → 1S, SS → ε.

• f5(w) = ww, where w ∈ {a, b}∗.
The solution is in the course packet.

• f6 = w′, where w ∈ {a, b}∗, and w′ is obtained from w by replacing the a’s by b’s and b’s by
a’s. For example, f6(aaba) = bbab).
Sa → bS, Sb → aS, SS → ε.

• f7(a1a2 . . . ak) = a1a1a2a2 . . . akak, where each ai is in the alphabet {a, b}. For example,
f7(aaba) = aaaabbaa.

Sa → aaS, Sb → bbS, SS → ε.

• f8(w) =

{

f6(w) if the rightmost symbol of w is a
f7(w) if the rightmost symbol of w is b

(Σ = {a, b}).

aS → Tb, bS → Ubb,
aT → Tb, bT → Ta, ST → ε
aU → Uaa, bU → Ubb, SU → ε.

13. Show that the following languages are recursive.
I provide only solution sketch; please make sure you write the solutions formally, in terms of
TMs that decide the languages!

• L40 = {〈M〉|M is a DFA and L(M) is finite}.
Check whether there is a loop in M that is reachable from the start state.

• L41 = {〈M〉|M is a DFA and L(M) = Σ∗}.
Minimize the DFA and check whether it had only one state with a self-loop on all the alphabet
symbols.

• L42 = {〈M, x〉|M is a DFA and M accepts x}.
Run M on x.

• L43 = {〈M, x〉|M is a DFA and M halts on x}.
DFA’s always halt!!!

• L44 = {〈G〉|G is a CFG and L(G) = ∅}.
Check whether any terminal string can be generated by G (you can convert into CNF first).

• L45 = {〈M〉|M is a DFA and M accepts some string of the form wwR for some w ∈ {a, b}∗}.
Intersect the DFA with a PDA that recognizes the language {wwR|w ∈ {a, b}∗}, and test the
emptiness of the resulting PDA. (You learned in class how to build the intersection of a PDA and
a DFA).

11

14. Prove that each of the following languages are not context-free, and write unrestricted grammars that
generate them.

• L46 = {x]w| x, w ∈ {a, b}∗ and x is a substring of w}.
Use the PL to prove the language is not CF. An unrestricted grammar that generates it:
S → S1XT
S1 → aS1a|bS1b|]TY
T → aT |bT |ε
Y → Y A
Aaa → aAa
Abb → bAb
Aba → aAb
Aab → bAa
AaX → Xa
AbX → Xb
Y X → ε.

• L47 = {w ∈ {a, b, c}∗|]a(w) ≥]b(w) ≥]c(w)}.
Use the PL to prove the language is not CF. An unrestricted grammar that generates it:
S → ABSC|ABS|T
T → AT |ε
AB → BA
BA → AB
BC → CB
CB → BC
AC → CA
CA → AC
A → a
B → b
C → c.

• L48 = {anbncanbn|n > 0}.
S → ABSXY , S → ABcXY
Y X → XY , BA → AB
Bc → bc, Bb → bb
Ab → ab, Aa → aa
cX → ca, aX → aa
aY → ab, bY → bb

• L49 = {anb2nc3n|n ≥ 0}.
S → aBSccc|ε
Ba → aB
Bc → bbc
Bb → bbb.

• L50 = {anbn+mcmdn|m, n ≥ 0}.
S → aBSd|T
T → bTc|ε

12

Ba → aB
Bb → bb
Bd → bd.

• L51 = {w ∈ {1}∗|w is the unary encoding of 2k for some k > 0}.
S → L1R
L → LL
L1 → 11L
LR → R
R → ε.

15. Let L52 be the language containing only the single string s, where

s =

{

0 if God does not exist
1 if God exists

Is L52 decidable? Why or why not? (Note that the answer does not depend on your religious convic-
tions.)

L52 is recursive. A = {0} or A = {1}, and for each possibility there is a TM that decides it!

13

