The Gateway to Computer Science Excellence
994 views

$$\color{Blue}{\textbf{Calculus}}$$

$$\color{Magenta}{\textbf{1.Trigonometry}}$$

$\textbf{Pythagorean Identities:}$

  • $\sin^{2}\theta + \cos^{2}\theta = 1$
  • $1+\tan^{2}\theta = \sec^{2}\theta$
  • $1+\cot^{2}\theta = \csc^{2}\theta$

$\textbf{Reciprocal Identities:}$

  • $\sin\theta = \dfrac{1}{\csc\theta}$
  • $\cos\theta = \dfrac{1}{\sec\theta}$
  • $\tan\theta = \dfrac{1}{\cot\theta}$
  • $\csc\theta = \dfrac{1}{\sin\theta}$
  • $\sec\theta = \dfrac{1}{\cos\theta}$
  • $\cot\theta = \dfrac{1}{\tan\theta}$

$\textbf{Tangent and Cotangent Identities:}$

  • $\tan\theta = \dfrac{\sin\theta}{\cos\theta}$
  • $\cot\theta = \dfrac{\cos\theta}{\sin\theta}$

$\textbf{Formulas for twice of angle:}$

  • $\sin2\theta = 2 \sin\theta \cos\theta$
  • $\cos2\theta = 2\cos^{2}\theta\: – 1 = 1 – 2\sin^{2}\theta $
  • $\tan2\theta = \dfrac{2\tan\theta} {1− \tan^{2}\theta} = \dfrac{\sin 2\theta} {1− 2\sin^{2}\theta}$

-------------------------------------------------------------------------------------------------------------------

$\color{\Purple}{\textbf{Some important things, we should know}}$

  • ${\color{Red} {\cos 0 = 1,\cos \pi = -1,\cos 2\pi = 1,\dots}}$
  • ${\color{Blue}{ \text{In general}\: \cos n\pi = (-1)^{n}\: \text{where}\: n=0,1,2,\dots}}$
  • ${\color{Magenta} {\sin 0 = 0,\sin \pi = 0,\sin 2\pi = 0,\dots}}$
  • ${\color{Green} {\text{In general}\: \sin n\pi = 0\: \text{where}\: n=0,1,2,\dots}}$
  • ${\color{Orange} {\sin(\pi-x)=\sin x,\sin (2\pi-x)=-\sin x,\sin(3\pi-x)=\sin x}}$
  • ${\color{Teal} {\text{In general}\: \sin (n\pi-x)=(-1)^{n+1}\sin x\: \text{ where} \: n=0,1,2,\dots}}$
  •  ${\color{Orchid} {\cos(\pi-x)=-\cos x,\cos (2\pi-x)=\cos x,\cos (3\pi-x)=-\cos x}}$
  • ${\color{purple} {\text{ In general}\: \cos (n\pi-x)=(-1)^{n}\cos x \: \text{where}\: n=0,1,2,\dots}}$ 

__________________________________________________________

$f(x) = \sin x$

$f(x) = \cos x$

Visualization:

$$\color{Red}{\textbf{2.Integral & Differential Calculus}}$$

$${\color{Teal}{2.1.\textbf{Some Useful Formulae for Differentiation}}}$$

  1. $\dfrac{\mathrm{d} }{\mathrm{d} x}(c) = 0;c = \text{Constant}$
  2. $\dfrac{\mathrm{d} }{\mathrm{d} x}(x) = 1$
  3. $\dfrac{\mathrm{d} }{\mathrm{d} x}(x^{n}) = nx^{n-1}$
  4. $\dfrac{\mathrm{d} }{\mathrm{d} x}(e^{x}) = e^{x}$
  5. $\dfrac{\mathrm{d} }{\mathrm{d} x}(a^{x}) = a^{x}\log_{e}a$
  6. $\dfrac{\mathrm{d} }{\mathrm{d} x}(\log x) = \dfrac{1}{x}$
  7. $\dfrac{\mathrm{d} }{\mathrm{d} x}(\log_{a} x) = \dfrac{1}{x}\log_{a}e$
  8. $\dfrac{\mathrm{d} }{\mathrm{d} x}(\sin x) = \cos x$
  9. $\dfrac{\mathrm{d} }{\mathrm{d} x}(\cos x) = -\sin x$
  10. $\dfrac{\mathrm{d} }{\mathrm{d} x}(\tan x) = \sec^{2} x$
  11. $\dfrac{\mathrm{d} }{\mathrm{d} x}(\cot x) = -\csc^{2} x$
  12. $\dfrac{\mathrm{d} }{\mathrm{d} x}(\csc x) = \csc x \cot x$
  13. $\dfrac{\mathrm{d} }{\mathrm{d} x}(\sec x) = \sec x\tan x$
  14. $\dfrac{\mathrm{d} }{\mathrm{d} x}(\sin^{-1} x) = \dfrac{1}{\sqrt{1-x^{2}}}$
  15. $\dfrac{\mathrm{d} }{\mathrm{d} x}(\cos^{-1} x) = \dfrac{-1}{\sqrt{1-x^{2}}}$
  16. $\dfrac{\mathrm{d} }{\mathrm{d} x}(\tan^{-1} x) = \dfrac{1}{1 + x^{2}}$
  17. $\dfrac{\mathrm{d} }{\mathrm{d} x}(\cot^{-1} x) = \dfrac{-1}{1 + x^{2}}$
  18. $\dfrac{\mathrm{d} }{\mathrm{d} x}(\sec^{-1} x) = \dfrac{1}{x \sqrt{x^{2}-1 }}$
  19. $\dfrac{\mathrm{d} }{\mathrm{d} x}(\csc^{-1} x) = \dfrac{-1}{x \sqrt{x^{2}-1}}$
  20. $\dfrac{\mathrm{d} }{\mathrm{d} x}(\sqrt{x}) = \dfrac{1}{ 2 \sqrt{x}}$

$${\color{Purple}{2.2.\textbf{Some Useful Formulae for Integration}}}$$

$\textbf{Algebraic Functions}$

  1. $\displaystyle{}\int k\: dx = kx + C$
  2. $\displaystyle{}\int x^{n}\: dx = \dfrac{x^{n+1}}{n+1} + C$
  3. $\displaystyle{}\int (ax + b)^{n}\: dx = \dfrac{(ax + b)^{n+1}}{a(n+1)} + C\:;(\text{for}\: n \neq -1)$
  4. $\displaystyle{}\int \dfrac{1}{x}\: dx = \ln x + C\:;\text{(for positive values of $x$ only)}$
  5. $\displaystyle{}\int \dfrac{c}{ax + b}\: dx = \dfrac{c}{a}\ln(ax +b) + C$

$\textbf{Exponential Functions}$

  1. $\displaystyle{}\int e^{x} dx =  e^{x}+ C$
  2. $\displaystyle{}\int a^{x} dx =  \dfrac{a^{x}}{\ln a}+ C$

$\textbf{Logarithm Functions}$

  1. $\displaystyle{}\int \ln x\: dx =  x\ln x\: –  x+ C$
  2. $\displaystyle{}\int \log_{a} x\: dx =  x\log_{a} x\: – \dfrac{x}{\log a} + C$

$\textbf{Trigonometric Functions}$

$\displaystyle{}\int \sin x\: dx =  -\cos x + C$

posted Dec 24, 2019 in Calculus by Veteran (60,647 points)
edited Dec 24, 2019 by | 994 views
20
Like
3
Love
0
Haha
0
Wow
0
Angry
0
Sad

3 Comments

This post is not completed yet, I'll update all points soon.
Sir, please do it as early as possible.

@kashyap02

I'm not sir, I'm also an aspirant like yours.

I will update soon, after the GATE exam. It will very helpful for ISI, CMI exams.

Quick search syntax
tags tag:apple
author user:martin
title title:apple
content content:apple
exclude -tag:apple
force match +apple
views views:100
score score:10
answers answers:2
is accepted isaccepted:true
is closed isclosed:true
50,833 questions
57,713 answers
199,427 comments
107,684 users