# Recent questions and answers in Graph Theory 1
An undirected graph is complete if there is an edge between every pair of vertices. Given a complete undirected graph on $n$ vertices, in how many ways can you choose a direction for the edges so that there are no directed cycles? $n$ $\frac{n(n-1)}{2}$ $n!$ $2^n$ $2^m, \: \text{ where } m=\frac{n(n-1)}{2}$
2
is there any easy way to do this i did it by making equation,Mn+Ec=Vn, Vc+In=Vn
1 vote
3
Number of multi-graphs possible with 4 vertices and at most 2 edges between each pair of vertices is ________________
4
Consider an undirected graph $G$ where self-loops are not allowed. The vertex set of $G$ is $\{(i,j) \mid1 \leq i \leq 12, 1 \leq j \leq 12\}$. There is an edge between $(a,b)$ and $(c,d)$ if $|a-c| \leq 1$ and $|b-d| \leq 1$. The number of edges in this graph is______.
5
6
The chromatic number of the following graph is _____
7
Let $G$ be an arbitrary graph with $n$ nodes and $k$ components. If a vertex is removed from $G$, the number of components in the resultant graph must necessarily lie down between $k$ and $n$ $k-1$ and $k+1$ $k-1$ and $n-1$ $k+1$ and $n-k$
8
Let $G=(V, E)$ be a graph. Define $\xi(G) = \sum\limits_d i_d*d$, where $i_d$ is the number of vertices of degree $d$ in $G.$ If $S$ and $T$ are two different trees with $\xi(S) = \xi(T)$, then $| S| = 2| T |$ $| S | = | T | - 1$ $| S| = | T |$ $| S | = | T| + 1$
9
The line graph $L(G)$ of a simple graph $G$ is defined as follows: There is exactly one vertex $v(e)$ in $L(G)$ for each edge $e$ in $G$. For any two edges $e$ and $e'$ in $G$, $L(G)$ has an edge between $v(e)$ and $v(e')$, if and only if $e$ and $e'$ are ... line graph of a planar graph is planar. (S) The line graph of a tree is a tree. $P$ only $P$ and $R$ only $R$ only $P, Q$ and $S$ only
10
Which of the following statements is true for every planar graph on $n$ vertices? The graph is connected The graph is Eulerian The graph has a vertex-cover of size at most $\frac{3n}{4}$ The graph has an independent set of size at least $\frac{n}{3}$
11
The $2^n$ vertices of a graph $G$ corresponds to all subsets of a set of size $n$, for $n \geq 6$. Two vertices of $G$ are adjacent if and only if the corresponding sets intersect in exactly two elements. The maximum degree of a vertex in $G$ is: $\binom{\frac{n}{2}}{2}.2^{\frac{n}{2}}$ $2^{n-2}$ $2^{n-3}\times 3$ $2^{n-1}$
12
How many graphs on $n$ labeled vertices exist which have at least $\frac{(n^2 - 3n)}{ 2}$ edges ? $^{\left(\frac{n^2-n}{2}\right)}C_{\left(\frac{n^2-3n} {2}\right)}$ $^{{\large\sum\limits_{k=0}^{\left (\frac{n^2-3n}{2} \right )}}.\left(n^2-n\right)}C_k\\$ $^{\left(\frac{n^2-n}{2}\right)}C_n\\$ $^{{\large\sum\limits_{k=0}^n}.\left(\frac{n^2-n}{2}\right)}C_k$
13
Consider the following graph $L$ and find the bridges,if any. No bridge $\{d,e\}$ $\{c,d\}$ $\{c,d\}$ and $\{c,f\}$
14
The number of distinct simple graphs with up to three nodes is $15$ $10$ $7$ $9$
15
Let G be a connected planar graph with 10 vertices. If the number of edges on each face is three, then the number of edges in G is_______________.
16
How many undirected graphs (not necessarily connected) can be constructed out of a given set $V=\{v_1, v_2, \dots v_n\}$ of $n$ vertices? $\frac{n(n-1)} {2}$ $2^n$ $n!$ $2^\frac{n(n-1)} {2}$
1 vote
17
Let $G$ be a simple undirected graph on $n=3x$ vertices $(x \geq 1)$ with chromatic number $3$, then maximum number of edges in $G$ is $n(n-1)/2$ $n^{n-2}$ $nx$ $n$
18
A simple graph is one in which there are no self loops and each pair of distinct vertices is connected by at most one edge. Let G be a simple graph on 8 vertices such that there is a vertex of degree 1, a vertex of degree 2, a vertex of degree 3, a vertex of degree 4, a vertex of ... 6 and a vertex of degree 7. Which of the following can be the degree of the last vertex? (A) 3 (B) 0 (C) 5 (D) 4
19
20
21
22
Consider a graph $G$ with $2^{n}$ vertices where the level of each vertex is a $n$ bit binary string represented as $a_{0},a_{1},a_{2},.............,a_{n-1}$, where each $a_{i}$ is $0$ or $1$ ... $x$ and $y$ denote the degree of a vertex $G$ and number of connected component of $G$ for $n=8.$ The value of $x+10y$ is_____________
23
Which of the following graphs is/are planner?
24
Write the adjacency matrix representation of the graph given in below figure.
25
26
How many ways are there to assign colours from range $\left\{1,2,\ldots,r\right\}$ to vertices of the following graph so that adjacent vertices receive distinct colours? $r^{4}$ $r^{4} - 4r^{3}$ $r^{4}-5r^{3}+8r^{2}-4r$ $r^{4}-4r^{3}+9r^{2}-3r$ $r^{4}-5r^{3}+10r^{2}-15r$
27
What is the chromatic number of the following graph? $2$ $3$ $4$ $5$
28
Total number of simple graphs that can be drawn using six vertices are: $2^{15}$ $2^{14}$ $2^{13}$ $2^{12}$
29
How many edges are there in a forest with $v$ vertices and $k$ components? $(v+1) - k$ $(v+1)/2 - k$ $v - k$ $v + k$
30
Which of the following is an advantage of adjacency list representation over adjacency matrix representation of a graph? In adjacency list representation, space is saved for sparse graphs. Deleting a vertex in adjacency list representation is easier than ... matrix representation. Adding a vertex in adjacency list representation is easier than adjacency matrix representation. All of the option.
31
Show that the number of odd-degree vertices in a finite graph is even.
32
The minimum number of colours required to colour the vertices of a cycle with $n$ nodes in such a way that no two adjacent nodes have the same colour is $2$ $3$ $4$ $n-2 \left \lfloor \frac{n}{2} \right \rfloor+2$
33
Degree of each vertex in $K_n$ is $n$ $n-1$ $n-2$ $2n-1$
34
The number of the edges in a regular graph of degree $’d’$ and $’n’$ vertices is Maximum of $n,d$ $n+d$ $nd$ $nd/2$
1 vote
35
If a planner graph, having $25$ vertices divides the plane into $17$ different regions. Then how many edges are used to connect the vertices in this graph. $20$ $30$ $40$ $50$
36
The number of ways to cut a six sided convex polygon whose vertices are labeled into four triangles using diagonal lines that do not cross is $13$ $14$ $12$ $11$
37
Maximum degree of any node in a simple graph with $n$ vertices is $n-1$ $n$ $n/2$ $n-2$
1 vote
Let $G$ be a simple undirected planar graph on $10$ vertices with $15$ edges. If $G$ is a connected graph, then the number of bounded faces in any embedding of $G$ on the plane is equal to: $3$ $4$ $5$ $6$
Given an undirected graph $G$ with $V$ vertices and $E$ edges, the sum of the degrees of all vertices is $E$ $2E$ $V$ $2V$
A path in graph $G$, which contains every vertex of $G$ and only once? Euler circuit Hamiltonian path Euler Path Hamiltonian Circuit