NIELIT 2018-24
If $f(x)=k$ exp, $\{ -(9x^2-12x+13)\}$, is a $p, d, f$ of a normal distribution ($k$, being a constant), the mean and standard deviation of the distribution: $\mu = \frac{2}{3}, \sigma = \frac{1}{3 \sqrt{2}}$ $\mu = 2, \sigma = \frac{1}{\sqrt{2}}$ $\mu = \frac{1}{3}, \sigma = \frac{1}{3 \sqrt{2}}$ $\mu = \frac{2}{3}, \sigma = \frac{1}{ \sqrt{3}}$
If $f(x)=k$ exp, $\{ -(9x^2-12x+13)\}$, is a $p, d, f$ of a normal distribution ($k$, being a constant), the mean and standard deviation of the distribution: $\mu = \frac{2}{3}, \sigma = \frac{1}{3 \sqrt{2}}$ $\mu = 2, \sigma = \frac{1}{\sqrt{2}}$ $\mu = \frac{1}{3}, \sigma = \frac{1}{3 \sqrt{2}}$ $\mu = \frac{2}{3}, \sigma = \frac{1}{ \sqrt{3}}$
answered
Oct 27, 2020
in Probability
Kumar1712
366 views