UGCNET-Dec2019-II: 4
What are the greatest lower bound $\text{(GLB)}$ and the least upper bound $\text{(LUB)}$ of the sets $A= \{ 3, 9, 12 \}$ and $B=\{1,2,4,5,10 \}$ if they exist in poset $(z^+, / )$? $\text{A(GLB - 3, LUB - 36); B(GLB - 1, LUB - 20)}$ ... $\text{A(GLB - 1, LUB - 36); B(GLB - 2, LUB - 20)}$ $\text{A(GLB - 1, LUB - 12); B(GLB - 2, LUB - 10)}$
What are the greatest lower bound $\text{(GLB)}$ and the least upper bound $\text{(LUB)}$ of the sets $A= \{ 3, 9, 12 \}$ and $B=\{1,2,4,5,10 \}$ if they exist in poset $(z^+, / )$? $\text{A(GLB – 3, LUB – 36); B(GLB – 1, LUB – 20)}$ $\text{A(GLB – 3, LUB – 12); B(GLB – 1, LUB – 10)}$ $\text{A(GLB – 1, LUB – 36); B(GLB – 2, LUB – 20)}$ $\text{A(GLB – 1, LUB – 12); B(GLB – 2, LUB – 10)}$
answered
Jun 7
in Others
mockingmoon
116 views