# Recent questions in Engineering Mathematics 1
The limit $\underset{n\rightarrow \infty }{\lim}\:n^{2}\int_{0}^{1}\:\frac{1}{\left ( 1+x^{2} \right )^{n}}\:dx$ is equal to $1$ $0$ $+\infty$ $1/2$
2
15. a) How many cards must be chosen from a standard deck of 52 cards to guarantee that at least two of the four aces are chosen? b) How many cards must be chosen from a standard deck of 52 cards to guarantee that at least two of the four aces and at least ... many cards must be chosen from a standard deck of 52 cards to guarantee that there are at least two cards of each of two different kinds?
3
How many pairs $(x,y)$ such that $x+y <= k$, where x y and k are integers and $x,y>=0, k > 0$. Solve by summation rules. Solve by combinatorial argument.
4
Solve the recurrence relation for the number of rounds in the tournament described in question $14.$
5
How many rounds are in the elimination tournament described in question $14$ when there are $32$ teams?
6
Suppose that there are $n = 2^{k}$ teams in an elimination tournament, where there are $\frac{n}{2}$ games in the first round, with the $\frac{n}{2} = 2^{k-1}$ winners playing in the second round, and so on. Develop a recurrence relation for the number of rounds in the tournament.
7
Give a big-O estimate for the function $f$ given below if $f$ is an increasing function. $f (n) = 2f (n/3) + 4 \:\text{with}\: f (1) = 1.$
1 vote
8
Find $f (n)$ when $n = 3k,$ where $f$ satisfies the recurrence relation $f (n) = 2f (n/3) + 4 \:\text{with}\: f (1) = 1.$
9
Give a big-O estimate for the function $f$ in question $10$ if $f$ is an increasing function.
10
Find $f (n)$ when $n = 2^{k},$ where $f$ satisfies the recurrence relation $f (n) = f (n/2) + 1 \:\text{with}\: f (1) = 1.$
11
Suppose that $f (n) = f (n/5) + 3n^{2}$ when $n$ is a positive integer divisible by $5, \:\text{and}\: f (1) = 4.$ Find $f (5)$ $f (125)$ $f (3125)$
12
Suppose that $f (n) = 2f (n/2) + 3$ when $n$ is an even positive integer, and $f (1) = 5.$ Find $f (2)$ $f (8)$ $f (64)$ $(1024)$
13
Suppose that $f (n) = f (n/3) + 1$ when $n$ is a positive integer divisible by $3,$ and $f (1) = 1.$ Find $f (3)$ $f (27)$ $f (729)$
14
How many operations are needed to multiply two $32 \times 32$ matrices using the algorithm referred to in Example $5?$
15
Determine a value for the constant C in Example $4$ and use it to estimate the number of bit operations needed to multiply two $64$-bit integers using the fast multiplication algorithm.
16
Express the fast multiplication algorithm in pseudocode.
17
Multiply $(1110)_{2} \:\text{and}\: (1010)_{2}$ using the fast multiplication algorithm.
How many comparisons are needed to locate the maximum and minimum elements in a sequence with $128$ elements using the algorithm in Example $2$?
How many comparisons are needed for a binary search in a set of $64$ elements?
Prove Theorem $6:$Suppose that $\{a_{n}\}$ satisfies the liner nonhomogeneous recurrence relation $a_{n} = c_{1}a_{n-1} + c_{2}a_{n-2} + \dots + c_{k}a_{n-k} + F(n),$ where $c_{1}.c_{2},\dots,c_{k}$ ... is $m,$ there is a particular solution of the form $n^{m}(p_{t}n^{t} + p_{t-1}n^{t-1} + \dots + p_{1}n + p_{0})s^{n}.$